Skip to main content
Log in

Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Internal combustion engines are now extremely optimized, in such ways improving their performance is a costly task. Traditional engine improvement by experimental means is aided by engine thermodynamic models, reducing experimental and total project costs. For those models, accuracy is mandatory in order to offer good prediction of engine performance. Modelling of the heat transfer and wall temperature is an important task concerning the accuracy and the predictions of any engine thermodynamic model, although it is many times an overcome task. In order to perform good prediction of engine heat transfer and wall temperature, models are required for accomplish heat transfer from hot gases to engine parts, heat transfer inside each engine part, and also heat transfer to coolant and lubricating oil. This paper presents an overview about engine heat transfer and wall temperature modelling, with main purpose to aid engine thermodynamic modelling and offer more accurate predictions of engine performance, consumption and emission parameters. The most important correlation are reviewed for three engine heat transfer approaches: gas to wall, wall to wall and wall to liquid heat transfer models. In order to obtain good prediction of wall temperature, those three approaches must be coupled, which may imply convection-conduction-convection problems, although for some applications in diesel engines, radiation problems must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olmeda P, Martín J, Novella R, Carreño R (2015) An adapted heat transfer model for engines with tumble motion. Appl Energy 158:190–202. https://doi.org/10.1016/j.apenergy.2015.08.051

    Article  Google Scholar 

  2. Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst Sebastian (2016) Heat transfer in premixed spark ignition engines part i: identification of the factors influencing heat transfer. Energy 116:380–391. https://doi.org/10.1016/j.energy.2016.08.065

    Article  Google Scholar 

  3. Kosmadakis GM, Pariotis EG, Rakopoulos CD (2013) Heat transfer and crevice flow in a hydrogen-fueled spark-ignition engine: effect on the engine performance and no exhaust emissions. Int J Hydrog Energy 38(18):7477–7489. https://doi.org/10.1016/j.ijhydene.2013.03.129

    Article  Google Scholar 

  4. Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13(1):1–46. https://doi.org/10.1016/0360-1285(87)90005-0

    Article  Google Scholar 

  5. Yamakawa M, Youso T, Fujikawa T, Nishimoto T, Wada Y, Sato K, Yokohata H (2012) Combustion technology development for a high compression ratio SI engine. SAE Int J Fuels Lubr 5(1):98–105. https://doi.org/10.4271/2011-01-1871

    Article  Google Scholar 

  6. Deng B, Jianqin F, Zhang D, Yang J, Feng R, Liu J, Li K, Liu X (2013) The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy 60:230–241. https://doi.org/10.1016/j.energy.2013.07.055

    Article  Google Scholar 

  7. Šarić S, Basara B, Žunič Z (2017) Advanced near-wall modeling for engine heat transfer. Int J Heat Fluid Flow 63:205–211. https://doi.org/10.1016/j.ijheatfluidflow.2016.06.019

    Article  Google Scholar 

  8. Bohac SV, Baker DM, Assanis DN (1996) A global model for steady state and transient SI engine heat transfer studies. Technical report, SAE Technical Paper. https://doi.org/10.4271/960073

  9. Bürkle S, Biondo L, Ding C-P, Honza R, Ebert Volker, Böhm Benjamin, Wagner Steven (2018) In-cylinder temperature measurements in a motored ic engine using tdlas. Flow Turbul Combust 101(1):139–159. https://doi.org/10.1007/s10494-017-9886-y

    Article  Google Scholar 

  10. Kosmadakis GM, Pariotis EG, Rakoupoulos CD (2012) Comparative analysis of three simulation models applied on a motored internal combustion engine. Energy Convers Manag 60:45–55. https://doi.org/10.1016/j.enconman.2011.11.031

    Article  Google Scholar 

  11. Bernard G, Lebas R, Demoulin F-X (2011) A 0d phenomenological model using detailed tabulated chemistry methods to predict diesel combustion heat release and pollutant emissions. Technical report, SAE Technical Paper. https://doi.org/10.4271/2011-01-0847

  12. Ge H-W, Shi Y, Reitz RD, Wickman DD, Willems Werner (2009) Optimization of a HSDI diesel engine for passenger cars using a multi-objective genetic algorithm and multi-dimensional modeling. SAE Int J Engines 2(1):691–713. https://doi.org/10.4271/2009-01-0715

    Article  Google Scholar 

  13. Vancoillie J, Sileghem L, Verhelst S (2014) Development and validation of a quasi-dimensional model for methanol and ethanol fueled si engines. Appl Energy 132:412–425. https://doi.org/10.1016/j.apenergy.2014.07.046

    Article  Google Scholar 

  14. Verhelst S, Sheppard CGW (2009) Multi-zone thermodynamic modelling of spark-ignition engine combustion-an overview. Energy Convers Manag 50(5):1326–1335. https://doi.org/10.1016/j.enconman.2009.01.002

    Article  Google Scholar 

  15. Zhang L (2018) Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Appl Thermal Eng 142:232–240. https://doi.org/10.1016/j.applthermaleng.2018.06.084

    Article  Google Scholar 

  16. Broatch A, Olmeda P, García A, Salvador-Iborra J, Warey A (2017) Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–1023. https://doi.org/10.1016/j.energy.2016.11.040

    Article  Google Scholar 

  17. Rashedul HK, Kalam MA, Masjuki HH, Ashraful AM, Imtenan S, Sajjad H, Wee LK (2014) Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol. Int Commun Heat Mass Transf 58:33–39. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.019

    Article  Google Scholar 

  18. Benajes J, Olmeda P, Martín J, Blanco-Cavero D, Warey Alok (2017) Evaluation of swirl effect on the global energy balance of a HSDI diesel engine. Energy 122:168–181. https://doi.org/10.1016/j.energy.2017.01.082

    Article  Google Scholar 

  19. Weller HG, Uslu S, Gosman AD, Maly RR, Herweg R, Heel B (1994) Prediction of combustion in homogeneous-charge spark-ignition engines. Int Symp COMODIA 94:163–169

    Google Scholar 

  20. Heywood John B (1994) Combustion and its modeling in spark-ignition engines. In: International symposium COMODIA, vol 94, pp 1–15

  21. Reuss DL, Kuo T-W, Khalighi B, Haworth D, Rosalik M (1995) Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations. Technical report, SAE Technical Paper. https://doi.org/10.4271/952381

  22. Wang Z, Shuai S-J, Wang J-X, Tian G-H (2006) A computational study of direct injection gasoline hcci engine with secondary injection. Fuel 85(12–13):1831–1841. https://doi.org/10.1016/j.fuel.2006.02.013

    Article  Google Scholar 

  23. Millo F, Luisi S, Borean F, Stroppiana A (2014) Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. Fuel 121:298–310. https://doi.org/10.1016/j.fuel.2013.12.047

    Article  Google Scholar 

  24. di Mare F, Knappstein R, Baumann M (2014) Application of les-quality criteria to internal combustion engine flows. Comput Fluids 89:200–213. https://doi.org/10.1016/j.compfluid.2013.11.003

    Article  MATH  Google Scholar 

  25. Finol CA, Robinson K (2006) Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proc Inst Mech Eng Part D J Automob Eng 220(12):1765–1781. https://doi.org/10.1243/09544070JAUTO202

    Article  Google Scholar 

  26. Romero CA (2009) Contribución al conocimiento del comportamiento térmico y la gestión térmica de los motores de combustión interna alternativos. PhD thesis, Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4923

  27. Fan X, Che Z, Wang T, Zhen L (2018) Numerical investigation of boundary layer flow and wall heat transfer in a gasoline direct-injection engine. Int J Heat Mass Transf 120:1189–1199. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.089

    Article  Google Scholar 

  28. Ngang EA, Abbe CVN (2018) Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Appl Therm Eng 136:462–474. https://doi.org/10.1016/j.applthermaleng.2018.03.022

    Article  Google Scholar 

  29. Soloiu V, Moncada JD, Gaubert R, Muiños M, Harp S, Ilie M, Zdanowicz A, Molina G (2018) LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtures. Renew Energy 123:323–333. https://doi.org/10.1016/j.renene.2018.02.061

    Article  Google Scholar 

  30. Renaud A, Ding C-P, Jakirlic S, Dreizler A, Böhm B (2018) Experimental characterization of the velocity boundary layer in a motored IC engine. Int J Heat Fluid Flow 71:366–377. https://doi.org/10.1016/j.ijheatfluidflow.2018.04.014

    Article  Google Scholar 

  31. Torregrosa AJ, Broatch A, Olmeda P, Salvador-Iborra J, Warey A (2017) Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. Energy Convers Manag 153:304–312. https://doi.org/10.1016/j.enconman.2017.10.003

    Article  Google Scholar 

  32. Ma PC, Ewan T, Jainski C, Lu L, Dreizler Andreas, Sick Volker, Ihme Matthias (2017) Development and analysis of wall models for internal combustion engine simulations using high-speed micro-piv measurements. Flow Turbul Combust 98(1):283–309. https://doi.org/10.1007/s10494-016-9734-5

    Article  Google Scholar 

  33. Cerdoun M, Carcasci C, Ghenaiet A (2016) An approach for the thermal analysis of internal combustion engines’ exhaust valves. Appl Ther Eng 102:1095–1108. https://doi.org/10.1016/j.applthermaleng.2016.03.105

    Article  Google Scholar 

  34. Shayler PJ, Colechin MJF, Scarisbrick A (1996) Heat transfer measurements in the intake port of a spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/960273

  35. Luján JM, Climent H, Olmeda P, Jiménez VD (2014) Heat transfer modeling in exhaust systems of high-performance two-stroke engines. Appl Therm Eng 69(1–2):96–104. https://doi.org/10.1016/j.applthermaleng.2014.04.045

    Article  Google Scholar 

  36. Michl J, Neumann J, Rottengruber H, Wensing M (2016) Derivation and validation of a heat transfer model in a hydrogen combustion engine. Appl Therm Eng 98:502–512. https://doi.org/10.1016/j.applthermaleng.2015.12.062

    Article  Google Scholar 

  37. Pischinger R, Klell M, Sams T (2009) Thermodynamik der Verbrennungskraftmaschine. Springer, Wien. https://doi.org/10.1007/978-3-211-99277-7

    Book  Google Scholar 

  38. Annand WJD (1963) Heat transfer in the cylinders of reciprocating internal combustion engines. Proc Inst Mech Eng 177(1):973–996. https://doi.org/10.1243/PIME_PROC_1963_177_069_02

    Article  Google Scholar 

  39. Woschni G (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. Technical report, SAE Technical paper. https://doi.org/10.4271/670931

  40. Han SB, Chung YJ, Kwon YJ, Lee S (1997) Empirical formula for instantaneous heat transfer coefficient in spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/972995

  41. De Cuyper T, Broekaert S, Chana K, De Paepe M, Verhelst S (2017) Evaluation of empirical heat transfer models using TFG heat flux sensors. Appl Therm Eng 118:561–569. https://doi.org/10.1016/j.applthermaleng.2017.02.049

    Article  Google Scholar 

  42. Irimescu A, Merola SS, Tornatore C, Valentino G (2015) Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine. Appl Energy 157:777–788. https://doi.org/10.1016/j.apenergy.2015.02.050

    Article  Google Scholar 

  43. Martins JJG, Finlay IC (1990) Heat transfer to air-ethanol and air-methanol sprays flowing in heated ducts and across heated intake valves. Technical report, SAE Technical Paper. https://doi.org/10.4271/900583

  44. Torregrosa AJ, Olmeda P, Degraeuwe B, Reyes M (2006) A concise wall temperature model for DI diesel engines. Appl Therm Eng 26(11–12):1320–1327. https://doi.org/10.1016/j.applthermaleng.2005.10.021

    Article  Google Scholar 

  45. Baker DM, Assanis DN (1994) A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Appl Math Modell 18:590–601. https://doi.org/10.1016/0307-904X(94)90317-4

    Article  MATH  Google Scholar 

  46. Torregrosa AJ, Olmeda P, Martín J, Romero C (2011) A tool for predicting the thermal performance of a diesel engine. Heat Transf Eng 32(10):891–904. https://doi.org/10.1080/01457632.2011.548639

    Article  Google Scholar 

  47. Shayler PJ, Christian SJ, Ma T (1993) A model for the investigation of temperature, heat flow and friction characteristics during engine warm-up. Technical report, SAE Technical Paper. https://doi.org/10.4271/931153

  48. Jarrier L, Champoussin JC, Yu R, Gentile D (2000) Warm-up of a DI diesel engine: experiment and modeling. Technical report, SAE Technical Paper. https://doi.org/10.4271/2000-01-0299

  49. Jafari A, Hannani SK (2006) Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines. Int Commun Heat Mass Transf 33(1):122–134. https://doi.org/10.1016/j.icheatmasstransfer.2005.08.008

    Article  Google Scholar 

  50. Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2011) Methodology for the estimation of cylinder inner surface temperature in an air-cooled engine. Appl Therm Eng 31:1474–1481. https://doi.org/10.1016/j.applthermaleng.2011.01.025

    Article  Google Scholar 

  51. Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2012) Methodology for the estimation of head inner surface temperature in an air-cooled engine. Appl Therm Eng 35:202–211. https://doi.org/10.1016/j.applthermaleng.2011.10.032

    Article  Google Scholar 

  52. Cerit M, Coban M (2014) Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int J Therm Sci 77:11–18. https://doi.org/10.1016/j.ijthermalsci.2013.10.009

    Article  Google Scholar 

  53. Yaohui L, Zhang X, Xiang P, Dong D (2017) Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Appl Therm Eng 113:796–812. https://doi.org/10.1016/j.applthermaleng.2016.11.070

    Article  Google Scholar 

  54. Goudarzi K, Moosaei A, Gharaati M (2015) Applying artificial neural networks (ANN) to the estimation of thermal contact conductance in the exhaust valve of internal combustion engine. Appl Therm Eng 87:688–697. https://doi.org/10.1016/j.applthermaleng.2015.05.060

    Article  Google Scholar 

  55. Finlay IC, Harris D, Boam DJ, Parks BI (1985) Factors influencing combustion chamber wall temperatures in a liquid-cooled, automotive, spark-ignition engine. Proc Inst Mech Eng Part D Transp Eng 199(3):207–214. https://doi.org/10.1243/PIME_PROC_1985_199_158_01

    Article  Google Scholar 

  56. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329. https://doi.org/10.1021/i260019a023

    Article  Google Scholar 

  57. Robinson K, Hawley JG, Hammond GP, Owen NJ (2003a) Convective coolant heat transfer in internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(2):133–146. https://doi.org/10.1177/095440700321700207

    Article  Google Scholar 

  58. Robinson K, Campbell NAF, Hawley JG, Tilley DG (1999) A review of precision engine cooling. Technical report, SAE Technical Paper. https://doi.org/10.4271/1999-01-0578

  59. Kandlikar SG (1998) Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. J Heat Transf 120(2):395–401. https://doi.org/10.1115/1.2824263

    Article  Google Scholar 

  60. Robinson K, Hawley JG, Campbell NAF (2003b) Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(10):877–889. https://doi.org/10.1243/095440703769683289

    Article  Google Scholar 

  61. Kandlikar SG, Bulut M (2003) An experimental investigation on flow boiling of ethylene-glycol/water mixtures. J Heat Transf 125(2):317–325. https://doi.org/10.1115/1.1561816

    Article  Google Scholar 

  62. Steiner H, Brenn G, Ramstorfer F, Breitschädel B (2011) Increased cooling power with nucleate boiling flow in automotive engine applications. In: Chiaberge M (ed) New trends and developments in automotive system engineering, chapter 13. IntechOpen, Rijeka

    Google Scholar 

  63. Li Z, Huang RH, Wang ZW (2012) Subcooled boiling heat transfer modelling for internal combustion engine applications. Proc Inst Mech Eng Part D J Autom Eng 226(3):301–311. https://doi.org/10.1177/0954407011417349

    Article  Google Scholar 

  64. Torregrosa AJ, Broatch A, Olmeda P, Cornejo O (2014) Experiments on subcooled flow boiling in ic engine-like conditions at low flow velocities. Exp Therm Fluid Sci 52:347–354. https://doi.org/10.1016/j.expthermflusci.2013.10.004

    Article  Google Scholar 

  65. Mehdipour R, Baniamerian Z, Delauré Y (2016) Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines. Heat Mass Transf 52(5):957–968. https://doi.org/10.1007/s00231-015-1611-6

    Article  Google Scholar 

  66. Torregrosa AJ, Broatch A, Olmeda P, Martín J (2010) A contribution to film coefficient estimation in piston cooling galleries. Exp Therm Fluid Sci 34(2):142–151. https://doi.org/10.1016/j.expthermflusci.2009.10.003

    Article  Google Scholar 

  67. Liu YC, Guessous L, Sangeorzan BP, Alkidas AC (2014) Laboratory experiments on oil-jet cooling of internal combustion engine pistons: area-average correlation of oil-jet impingement heat transfer. J Energy Eng 141(2):C4014003. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000227

    Article  Google Scholar 

  68. Peng W, Jizu L, Minli B, Yuyan W, Chengzhi Hu, Liang Zhang (2014) Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery. Numer Heat Transf Part A Appl 65(4):378–400. https://doi.org/10.1080/10407782.2013.832071

    Article  Google Scholar 

  69. Payri F, Olmeda P, Martín J, Carreño R (2014) A new tool to perform global energy balances in di diesel engines. SAE Int J Engines 7(1):43–59. https://doi.org/10.4271/2014-01-0665

    Article  Google Scholar 

  70. Kikusato A, Kusaka J, Daisho Y (2015) A numerical study on predicting combustion chamber wall surface temperature distributions in a diesel engine and their effects on combustion, emission and heat loss characteristics by using a 3d-cfd code combined with a detailed heat transfer model. Technical report, SAE Technical Paper. https://doi.org/10.4271/2015-01-1847

  71. Martín J, Novella R, García A, Carreño R, Heuser Benedikt, Kremer Florian, Pischinger Stefan (2016) Thermal analysis of a light-duty ci engine operating with diesel-gasoline dual-fuel combustion mode. Energy 115:1305–1319. https://doi.org/10.1016/j.energy.2016.09.021

    Article  Google Scholar 

  72. Broatch A, Olmeda P, Margot X, Escalona J (2019) New approach to study the heat transfer in internal combustion engines by 3d modelling. In J Therm Sci 138:405–415. https://doi.org/10.1016/j.ijthermalsci.2019.01.006

    Article  Google Scholar 

Download references

Acknowledgements

The author Leonardo Fonseca acknowledges CAPES (Coordination for the Improvement of Higher Education Personnel) for the scholarship from the program “CAPES - DEMANDA SOCIAL”, PhD level.

Funding

This study was partially funded by “CAPES - DEMANDA SOCIAL” Ph.D. level scholarship, from CAPES (Coordination for the Improvement of Higher Education Personnel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Fonseca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author Leonardo Fonseca acknowledges CAPES (Coordination for the Improvement of Higher Education Personnel) for the scholarship from the program “CAPES - DEMANDA SOCIAL”, Ph.D. level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, L., Olmeda, P., Novella, R. et al. Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview. Arch Computat Methods Eng 27, 1661–1679 (2020). https://doi.org/10.1007/s11831-019-09361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09361-9

Keywords

Navigation