Skip to main content
Log in

Alloy design strategies for promoting protective oxide-scale formation

  • Overview
  • Oxidation Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article discusses general strategies for designing alloys to form protective oxide scales. Approaches based on classical alloyoxidation theories work reasonably well for single-phase alloys. However, high-temperature alloy development has been and will increasingly be based on multiphase microstructures in order to achieve many of the needed, but usually opposing properties, such as high-temperature strength and room-temperature toughness. No theoretical-based, well-defined strategies exist for the design of oxidation-resistant multiphase alloys. Still, key factors are beginning to emerge, which can provide guidance for promoting the formation of protective scales on multiphase alloys and for taking advantage of some unique mechanisms that are operative in multiphase alloys but not in single-phase alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad, High Temperature Corrosion (London: Elsevier Applied Science Publishing, 1988), pp. 268–274.

    Google Scholar 

  2. E.J. Opila and N.S. Jacobson, Fundamental Aspects of High Temperature Corrosion, ed. D.A. Shores, R.A. Rapp, and P.Y. Hou (Pennington, NJ: Electrochemical Society, 1997), pp. 269–280.

    Google Scholar 

  3. M.P. Brady et al., University of Florida, Gainesville, unpublished data (1992).

  4. J.L. Smialek, in this issue.

  5. G.R. Wallwork, Rep. Prog. Phys., 39 (1976), pp. 401–485.

    Article  CAS  Google Scholar 

  6. F.H. Stott, Rep. Prog. Phys., 50 (1987), pp. 861–913.

    Article  CAS  Google Scholar 

  7. G.C. Wood and F.H. Stott, Mater. Sci. Technol., 3 (1987), pp. 519–530.

    CAS  Google Scholar 

  8. D.P. Whittle, High Temperature Corrosion, ed. R.A. Rapp (Houston, TX: National Association of Corrosion Engineers, 1981), pp. 171–183.

    Google Scholar 

  9. F. Gesmundo, Mater. Sci. Forum, 251–254 (1997), pp. 3–18.

    Google Scholar 

  10. F. Gesmundo and Y. Niu, Oxid. Met., 50 (1998), pp. 1–26.

    Article  CAS  Google Scholar 

  11. R.A. Rapp, Corrosion, 21 (1965), pp. 382–401.

    CAS  Google Scholar 

  12. F.H. Stott, Mater. Character., 28 (1992), pp. 311–325.

    Article  CAS  Google Scholar 

  13. F.H. Stott and G.C. Wood, Mater. Sci. Technol., 4 (1988), pp. 1072–1078.

    CAS  Google Scholar 

  14. D.R.G. Mitchell, D.J. Young, and W. Kleeman, Mater. Corros., 49 (1998), pp. 231–236.

    Article  CAS  Google Scholar 

  15. I.C. Chen and D.L. Douglass, Oxid. Met., 52 (1999), pp. 195–207.

    Article  CAS  Google Scholar 

  16. D.P. Whittle et al., Acta Metall., 15 (1967), pp. 1747–1755.

    Article  CAS  Google Scholar 

  17. C. Wagner, Z. Elektrochem., 63 (1959), pp. 772–790.

    CAS  Google Scholar 

  18. F. Gesmundo and F. Viani, Oxid. Met., 25 (1986), pp. 269–282.

    Article  CAS  Google Scholar 

  19. R.A. Rapp, Acta Metall., 9 (1961), pp. 730–741.

    Article  CAS  Google Scholar 

  20. C.S. Giggins and F.S. Pettit, Trans. Met. Soc. AIME, 245 (1969), pp. 2495–2507.

    CAS  Google Scholar 

  21. B.A. Pint, J. Leibowitz, and J.H. DeVan, Oxid. Met., 51 (1999), pp. 181–197.

    Article  CAS  Google Scholar 

  22. M.S. Seltzer and B.A. Wilcox, Met. Trans., 3 (1972), pp. 2357–2359.

    Article  CAS  Google Scholar 

  23. D. Caplan, Corros. Sci., 6 (1966), pp. 509–515.

    Google Scholar 

  24. B. Gleeson, to be published in Corrosion and Environmental Degradation of Materials: Volume 19 of the Series Materials Science and Technology, ed. M. Schulze (Weinheim, Germany: Wiley-VCH).

  25. D. Clemens, W.J. Quadakkers, and L. Singheiser, High Temperature Corrosion and Materials Chemistry, vol. 98–9, ed. P.Y. Hou et al. (Pennington, NJ: Electrochemical Society, 1998), pp. 134–145.

    Google Scholar 

  26. R.T. Bryant, J. Less Common Metals, 4 (1962), pp. 62–68.

    Article  CAS  Google Scholar 

  27. R.A. Perkins, K.T. Chiang, and G.H. Meier, Scripta Met., 21 (1987), pp. 1505–1510.

    Article  CAS  Google Scholar 

  28. R.A. Perkins, K.T. Chiang, and G.H. Meier, Scripta Met., 22 (1988), pp. 419–423.

    Article  CAS  Google Scholar 

  29. I.G. Wright, Oxidation of Iron-, Nickel-, and Cobalt-Base Alloys, Metals and Ceramics Information Center Report MCIC-72-07 (Columbus, OH: Battelle Columbus Laboratories, 1972).

    Google Scholar 

  30. C. Wagner, Corros. Sci., 5 (1965), pp. 751–764.

    Article  CAS  Google Scholar 

  31. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met., 44 (1995), pp. 113–145.

    Article  CAS  Google Scholar 

  32. J.P. Sauer, R.A. Rapp, and J.P. Hirth, Oxid. Met., 18 (1982), pp. 285–294.

    Article  CAS  Google Scholar 

  33. P.R.S. Jackson and G.R. Wallwork, Oxid. Met., 21 (1984), pp. 135–170.

    Article  CAS  Google Scholar 

  34. S.W. Guan and W.W. Smeltzer, Oxid. Met., 42 (1994), pp. 375–391.

    CAS  Google Scholar 

  35. W.C. Hagel, Corros., 21 (1965), pp. 316–326.

    CAS  Google Scholar 

  36. Y.K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes (Cambridge, U.K.: Cambridge University Press, 1985), pp. 437–438.

    Google Scholar 

  37. J. Stringer, P.S. Corkish, and D.P. Whittle, Stress Effects and Oxidation of Metals, ed. J.V. Cathcart (New York: Met. Soc. AIME, 1975), pp. 75–93.

    Google Scholar 

  38. B.D. Bastow, G.C. Wood, and D.P. Whittle, Oxid. Met., 16 (1981), pp. 1–32.

    Article  CAS  Google Scholar 

  39. G. Wahl, Thin Solid Films, 107 (1983), pp. 417–426.

    Article  CAS  Google Scholar 

  40. Ge Wang, B. Gleeson, and D.L. Douglass, Oxid. Met., 35 (1991), pp. 333–348.

    Article  CAS  Google Scholar 

  41. F. Gesmundo and B. Gleeson, Oxid. Met., 44 (1995), pp. 211–238.

    Article  CAS  Google Scholar 

  42. H.J. Grabke, M. Brumm, and M. Steinhorst, Mater. Sci. Tech., 8 (1992), pp. 339–344.

    CAS  Google Scholar 

  43. M.P. Brady et al., Acta Mater., 45 (1997), pp. 2371–2382.

    Article  CAS  Google Scholar 

  44. M.P. Brady, E.D. Verink, Jr., and J.W. Smith, Oxid Met., 51 (1999), pp. 539–556.

    Article  CAS  Google Scholar 

  45. F. Gesmundo et al., Oxid. Met., 42 (1994), pp. 465–484.

    CAS  Google Scholar 

  46. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met., 42 (1994), pp. 409429.

    Google Scholar 

  47. F. Gesmundo, F. Viani, and Y. Niu, Oxid. Met., 45 (1996), pp. 51–76.

    Article  CAS  Google Scholar 

  48. M. Levy, P. Farrell, and F. Pettit, Corros., 42 (1986), pp. 708–717.

    CAS  Google Scholar 

  49. M. E. El-Dahshan, J. Stringer, and D.P. Whittle, Cobalt, 4 (1974), p. 86.

    Google Scholar 

  50. R.N. Durham, B. Gleeson, and D.J. Young, Oxid. Met., 50 (1998), pp. 139–165.

    Article  CAS  Google Scholar 

  51. R. Petkovic-Luton and T.A. Ramanarayanan, Oxid. Met., 34 (1990), pp. 381–400.

    Article  CAS  Google Scholar 

  52. R.N. Durham, B. Gleeson, and D.J. Young, Mater. Corros., 49 (1999), pp. 855–863.

    Article  Google Scholar 

  53. P. Carter, B. Gleeson, and D.J. Young, Acta Metall., 44 (1996), pp. 4033–4038.

    CAS  Google Scholar 

  54. M.J. Bennett, J.A. Desport, and P.A. Labun, Proc. Roy. Soc. A, 412 (1987), p. 223.

    Article  CAS  Google Scholar 

  55. B. Sundman, B. Jansson, and J.O. Anderson, CALPHAD, 9 (1985), pp. 153–190.

    Article  CAS  Google Scholar 

  56. J. Stringer et al., Proc. 8th Intl. Congress on Metallic Corrosion (Frankfurt am Main, Germany: DeChema, 1981), p. 655.

    Google Scholar 

  57. I. G. Wright, V. Nagarajan, and J. Stringer, Corr. Sci., 35 (1993), pp. 841–854.

    Article  CAS  Google Scholar 

  58. V. Nagarajan and I. G. Wright, “Refractory Metal Alloys Having Inherent High-Temperature Oxidation Protection,” U.S. patent 4,762,557 (1988).

  59. I. G. Wright and V. Nagarajan, J. Physique IV, C9, 3 (1993), pp. 151–157.

    Google Scholar 

  60. F. Dettenwanger et al., Oxid. Met., 50 (1998), pp. 269–307.

    Article  CAS  Google Scholar 

  61. R.A. Perkins and G.H. Meier, Industry-University Advanced Materials Conference II, ed. F.W. Smith (Denver, CO: Advanced Materials Institute, 1989), pp. 92–99.

    Google Scholar 

  62. M.P. Brady, J.L. Smialek, and F. Terepka, Scripta Met., 32 (1995), pp. 1659–1664.

    Article  CAS  Google Scholar 

  63. M.P. Brady et al., Acta Mater., 45 (1997), pp. 2357–2369.

    Article  CAS  Google Scholar 

  64. C. Lang and M. Schütze, Mat. Corr., 48 (1997), pp. 13–22.

    Article  CAS  Google Scholar 

  65. N.S. Jacobson, M.P. Brady, and G.M. Mehrotra, Oxid. Met., 52 (1999), pp. 537–556.

    Article  CAS  Google Scholar 

  66. D.A. Berztiss, F.S. Pettit, and G.H. Meier, High Temperature Ordered Intermetallics VI, ed. H.J. Baker et al. (Pittsburgh, PA: MRS, 1995), pp. 1285–1290.

    Google Scholar 

  67. F. Wang, Z. Tang, and Z.W. Wu, Oxid. Met., 48 (1997), pp. 381–390

    Article  CAS  Google Scholar 

  68. M.P. Brady, J.L. Smialek, and W.J. Brindley, “Oxidation-Resistant Ti-Al-Fe Alloy Diffusion Barrier Coatings,” U.S. patent 5,776,617 (7 July 1998).

  69. M.P. Brady, J.L. Smialek, and W.J. Brindley, unpublished research, NASA Lewis Research Center, Cleveland, OH (1997).

  70. J. Doychak and M.G. Hebsur, Oxid. Met., 36 (1991), pp. 113–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: Compositions are given in weight percent unless otherwise noted.

Formoreinformation, contactM.P. Brady, Metals and Ceramics Division, Oak Ridge National Laboratory, OakRidge, Tennessee37831-6115; (423) 574-5153; fax (423) 574-7659; e-mail bradymp@oml.gov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, M.P., Wright, I.G. & Gleeson, B. Alloy design strategies for promoting protective oxide-scale formation. JOM 52, 16–21 (2000). https://doi.org/10.1007/s11837-000-0109-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0109-x

Keywords

Navigation