Skip to main content
Log in

Emerging technologies for iron and steelmaking

  • Overview
  • Emerging Technologies
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The iron and steel industry has undergone a technological revolution in the last 40 years. In a relatively short time, the North American industry has observed the complete disappearance of basic open hearth processing, as well as the wide spread adoption of continuous casting and the near complete shift of long product production to the electric arc furnace sector. These and other developments have dramatically affected the way steel is made, the price, quality and range of products generated, and changed the basic structure of the industry. The same trends can be observed in other industrialized nations and are reflected in the global industry as well. Competitive forces and market globalization will continue to drive the development and adoption of new iron and steelmaking technologies well into the 21st century. Industry response to specific local and global technology drivers will likely result in both incremental improvements in existing technologies, and in major developments in several key areas including direct iron making and near net shape casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Fruehan, ed., The Making Shaping and Treating of Steel, 11th Edition—Steelmaking and Refining Volume (Pittsburgh, PA: AISE, 1998), p. 103.

    Google Scholar 

  2. R.J. Fruehan et al., The Future of Steelmaking and its Technologies (Idaho Falls, ID: Idaho National Research Laboratory, 1995).

    Google Scholar 

  3. Steel Industry Technology Roadmap (Washington, D.C.: American Iron and Steel Institute, February 1998); www.steel.org/mt/roadmap/roadmap.htm.

  4. G. Kolb and H.B. Lüngen, 1998 ICSTI/Ironmaking Conf. Proc. (Warrendale, PA: ISS, 1998), pp. 75–83.

    Google Scholar 

  5. Y. Okuno and M. Nose, in Ref. 4, pp. 67–74.

    Google Scholar 

  6. R.J. Fruehan, in Ref. 4, pp. 59–66.

    Google Scholar 

  7. Jean-Marc Steiler, in Ref. 4, pp. 161–173.

    Google Scholar 

  8. Charles J. Messina and John R. Paules, 1996 Steelmaking Conf. Proc. (Warrendale, PA: ISS, 1996).

    Google Scholar 

  9. Manfred M. Wolf, 1995 Electric Furnace Conf. Proc. (Warrendale, PA: ISS, 1995), pp. 259–280.

    Google Scholar 

  10. R.J. Fruehan, Scandinavian J. Metallurgy, 28 (1999), pp. 77–85.

    CAS  Google Scholar 

  11. R.J. Fruehan and C.L. Nassaralla, ISS Transactions, Iron and Steelmaker (August 1998), pp. 59–68.

  12. I. Jimbo, M.S. Sulsky, and R.J. Fruehan, Iron and Steelmaker (August 1988), pp. 20–23.

  13. R.J. Fruehan and A.W. Cramb, 48th Electric Furnace Conf. Proc. (Warrendale, PA: ISS, 1990), pp. 11–14.

    Google Scholar 

  14. R.J. Fruehan et al., Met. Trans. B, 25B (2) (1994), pp. 306–308.

    Google Scholar 

  15. T. Nagasaka, M. Hino, and S. Ban-ya, 15th Process Technol. Conf. Proc. (Warrendale, PA: ISS, 1997), pp. 41–49.

    Google Scholar 

  16. M. Iwase, K. Tokinori, and H. Ohshita, Iron and Steelmaker (July 1993), pp. 61–66.

  17. M. Iwase, K. Tokinori, and H. Ohshita, Scandinavian J. Metallurgy (February 1998), pp. 24–30.

  18. C. Rabold and R Hiernaux, in Ref. 4, pp. 175–185.

    Google Scholar 

  19. Michael Riley, DOE-OIT Sponsored Research “Hot Oxygen (2001); www.oit.doe.gov/factsheets/#steel).

  20. R. Panigrahi and I. Dasgupta, “Direct Reduction Processes,” (Warrendale, PA: ISS, 1999), pp. 99–119.

    Google Scholar 

  21. www.midrex.com/iron/fast.asp.

  22. L.J. Lehtinen, J. Hansen, and N. Rokop, AISE Proc. of the 1999 Annual Convention and Iron and Steel Exposition (Washington, D.C.: AISI, 1999).

    Google Scholar 

  23. R.J. Fruehan, Direct Reduced Iron—Technology and Economics of Production and Use (Warrendale, PA: ISS, 1999), pp. 163–171.

    Google Scholar 

  24. Michael Lemperle, Proc. Savard/Lee Int. Symp. on Bath Smelting (Warrendale, PA: TMS, 1992), pp. 159–176.

    Google Scholar 

  25. J.L. Schenk et al., Iron and Steelmaker (July 1998), pp. 39–44.

  26. K. Brotzmann, Proc. Savard/Lee Int. Symp. on Bath Smelting (Warrendale, PA: TMS, 1992), pp. 29–38.

    Google Scholar 

  27. R.J. Dry, C.P. Bates, and D.P. Price, 1999 Ironmaking conf. Proc. (Warrendale, PA: ISS, 1999); reprinted at www.hismelt.com.au.

    Google Scholar 

  28. M. Ishikawa, 1996 Ironmaking Conf. Proc. (Warrendale, PA: ISS, 1996), pp. 415–421.

    Google Scholar 

  29. K. Saito, in Ref. 26, pp. 579–590.

    Google Scholar 

  30. T. Kitagawa et al., in Ref. 26, pp. 611–622.

    Google Scholar 

  31. E. Aukrust., in Ref. 26, pp. 591–610.

    Google Scholar 

  32. O. Fortini et al., DOE-OIT Sponsored Research (2001); www.oit.doe.gov/factsheets/#steel.

  33. R.J. Fruehan., in Ref. 26, pp. 233–248.

    Google Scholar 

  34. P. Iwamasa and R.J. Fruehan, Met. Trans. B, 28B (1) (1997), pp. 47–57.

    Article  CAS  Google Scholar 

  35. Y. Zhang and R.J. Fruehan, Met. Trans. B, 26B (1995), pp. 803–812.

    CAS  Google Scholar 

  36. Y. Zhang and R.J. Fruehan, Met. Trans. B, 26B (1995), pp. 801–819.

    Google Scholar 

  37. Sandia National Laboratory, DOE-OIT Sponsored Research (2001); http://www.oit.doe.gov/factsheets/#steel.

  38. R.J. Fruehan, Iron and Steelmaker (July 1996), pp. 25–34.

  39. K. Schwerdtfeger, Iron and Steelmaker (April 1995), pp. 25–31.

  40. K. Schwerdtfeger, ISIJ Int., 38 (8) (1998), pp. 852–861.

    Google Scholar 

  41. A.W. Cramb et al., Steelmaking Conf. Proc. (Warrendale, PA: ISS, 1995), pp. 655–667.

    Google Scholar 

  42. C. Orrling et al., Iron and Steelmaker (January 2000), pp. 53–63.

  43. A.W. Cramb, Near-Net-Shape Casting in the Minimills (Vancouver, Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 1995), pp. 355–372.

    Google Scholar 

  44. W. Blejde, R. Mahapatra, and J. Fukase, Iron and Steelmaker (February 2001), pp. 43–48.

  45. L. Strezov and J. Herbertson, ISIJ Int., 38 (9) (1998), pp. 959–966.

    CAS  Google Scholar 

  46. W. Blejde, R. Mahapatra, and J. Fukase, Iron and Steelmaker (April 2000), pp. 29–33.

  47. K. Kumari et al., J.J. Jonas Symposium on Thermomechanical Processing of Steel as held at the 39th Annual Conf. of Metallurgists of CIM (Vancouver, Canada: Canadian CIM, 2000), p. 629.

    Google Scholar 

  48. K. Mukunthan et al., The Brimacombe Memorial Symp. (Montreal: CIM, 2000), pp. 421–437.

    Google Scholar 

  49. K. Schwerdtfeger et al., ISIJ Int., 40 (8) (2000), pp. 756–764.

    CAS  Google Scholar 

  50. R. Bradt and M.A.R. Sharif, DOE-OIT Sponsored Research (2001); www.oit.doe.govfactsheets/#steel.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor’s Note: A hypertext-enhanced version of this article can be found at www.tms.org/pubs/journals/JOM/0110/Manning-0110.html.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, C.P., Fruehan, R.J. Emerging technologies for iron and steelmaking. JOM 53, 36–43 (2001). https://doi.org/10.1007/s11837-001-0054-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-001-0054-3

Keywords

Navigation