Skip to main content
Log in

Cup-shaped functionally gradient NiFe2O4-based cermet inert anodes for aluminum reduction

  • Aluminum Reduction
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Application of inert anode and wet-table cathode technology for aluminum reduction will result in significant energy and environmental benefits, so it has been a research focus for several decades. The candidate as inert anode concentrates on oxide ceramic, cermet, and alloy. This paper reviews briefly the research progress and presents the achievements of Central South University, Changsha, China, in developing an NiFe2O4-based cermet inert anode, which includes the preparation and optimization of material performance, the joint between the cermet anode and metallic bar, as well as the results of electrolysis testing for a large inert anode group. At the same time, the problems for NiFe2O4-based cermet inert anode faced are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Keniry, JOM, 53(5) (2001), pp. 43–47.

    Article  ADS  CAS  Google Scholar 

  2. B.J. Welch et al., JOM, 53(2) (2001), pp. 13–18.

    Article  CAS  Google Scholar 

  3. R.P. Pawlek, Light Metals 2004, ed. A.T. Tabereaux (Warrendale, PA: TMS, 2004), pp. 283–287.

    Google Scholar 

  4. E. Olsen et al., Journal of Applied Electrochemistry, 29(3) (1999), pp. 293–299.

    Article  CAS  MathSciNet  Google Scholar 

  5. J.H. Yang et al., Light Metals 1993, ed. S.K. Das (Warrendale, PA: TMS, 1993), pp. 493–495.

    Google Scholar 

  6. A.M. Vecchio-sadus et al., Light Metals 1996, ed. W. Hale (Warrendale, PA: TMS, 1996), pp. 259–265.

    Google Scholar 

  7. J.H. Yang et al., Light Metals 2006, ed. T.J. Galloway (Warrendale, PA: TMS, 2006), pp. 421–424.

    Google Scholar 

  8. T.R. Beck et al., U.S. patent 6,419,812 (16 July 2002).

  9. R.V. Kaenel et al., Light Metals 2006, ed. T.J. Galloway (Warrendale, PA: TMS, 2006), pp. 397–402.

    Google Scholar 

  10. E. Olsen et al., Light Metals 1996, ed. W. Hale (Warrendale, PA: TMS, 1996), pp. 249–257.

    Google Scholar 

  11. T.R. Alcom et al., Light Metals 1993, ed. S.K. Das (Warrendale, PA: TMS, 1993), pp. 433–443.

    Google Scholar 

  12. G.R. Tarcy, Light Metals 1986, ed. R.E. Miller (Warrendale, PA: TMS, 1986), pp. 309–320.

    Google Scholar 

  13. E. Olsen et al., Journal of Applied Electrochemistry, 29(3) (1999), pp. 301–311.

    Article  CAS  MathSciNet  Google Scholar 

  14. R.D. Peterson et al., Light Metals 1990, ed. C.M. Bickert (Warrendale, PA: TMS, 1990), pp. 385–393.

    Google Scholar 

  15. P. Chin et al., Canadian Metallurgical Quarterly, 35(1) (1996), pp. 61–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Liang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, ZL., Lai, YQ., Li, Z. et al. Cup-shaped functionally gradient NiFe2O4-based cermet inert anodes for aluminum reduction. JOM 61, 34–38 (2009). https://doi.org/10.1007/s11837-009-0067-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0067-x

Keywords

Navigation