Skip to main content
Log in

The finite element simulation of high-temperature magnesium AZ31 sheet forming

  • Magnesium Sheet Processing
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Finite element (FE) simulations will be vitally important to advancing magnesium alloy sheet forming technologies for vehicle component manufacturing. Although magnesium alloy sheet has been successfully formed into complex components at high temperatures, material constitutive model development for FE simulations has not kept pace with the needs of forming process design. This article describes the application of a new material constitutive model in FE simulations for hot forming of magnesium AZ31 alloy sheet. Simulations of forming both simple geometries from laboratory studies and complex parts from production trials are presented and compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aragones et al., (Warrendale, PA: Society of Automotive Engineers, Inc., 2005), SAE 2005-01-0340.

  2. A.A. Luo, JOM, 54(2) (2002), pp. 42–48.

    Article  CAS  Google Scholar 

  3. M. K. Kulekci, Int. J. Adv. Manuf. Technol., 39 (2008), pp. 851–865.

    Article  Google Scholar 

  4. J.S. Balzer et al., (Warrendale, PA: Society of Automotive Engineers, Inc., 2003), SAE 2003-01-0186.

  5. A. Wielgat, (April 1, 1999), www.WardsAuto.com.

  6. S.R. Agnew, JOM, 56(5) (2004), pp. 20–21.

    Article  ADS  CAS  Google Scholar 

  7. S. R. Agnew and Özgür Duygulu, Int. J. Plasticity, 21 (2005), pp. 1161–1193.

    Article  MATH  CAS  Google Scholar 

  8. J.T. Carter, P.E. Krajewski, and R. Verma, JOM, 60(11) (2008), pp. 77–81.

    Article  CAS  Google Scholar 

  9. P.E. Krajewski et al., Korean Institute of Metals and Materials: Trends in Metals & Materials Engineering, 20(5) (2007), pp. 60–68.

    CAS  Google Scholar 

  10. R. Verma and J.T. Carter, (Warrendale, PA: Society of Automotive Engineers, Inc., 2006), SAE 2006-01-0525.

  11. P.E. Krajewski and J.G Schroth. Mat. Sci. Forum, 551–552 (2007), pp. 3–12.

    Article  Google Scholar 

  12. PAM-STAMP 2GTM, www.esigroup.com.

  13. ABAQUSTM, www.simulia.com.

  14. E. Taleff et al., Acta Materialia (2009), in press.

  15. F.S. Jarrar et al., J. Materials Engineering and Performance (2008), in press.

  16. A.-W. El-Morsy and K-I. Manabe, Materials Letters, 60 (2006), pp. 1866–1870.

    Article  CAS  Google Scholar 

  17. A.-W. El-Morsy, K-I. Manabe, and H. Nishimura, Materials Trans., 43 (2002), pp. 2443–2448.

    Article  CAS  Google Scholar 

  18. X. Wu and Y. Liu, Scripta Mater., 46 (2002), pp. 269–274.

    Article  CAS  Google Scholar 

  19. K. Matsubara et al., Acta Mater., 51 (2003), pp. 3073–3084.

    Article  CAS  Google Scholar 

  20. H. Palaniswamy, G. Ngaile, and T. Altan, H. J. Maters. Proc. Tech., 146 (2004), pp. 52–60.

    Article  CAS  Google Scholar 

  21. C.F. Martin, J.J. Blandin, and L. Salvo, Maters. Sci. Eng. A, 297 (2001), pp. 212–222.

    Article  Google Scholar 

  22. K. Siegert and S. Jäger, (Warrendale, PA: Society of Automotive Engineers, Inc., 2004), SAE 2004-01-1043.

  23. S. Kaya, Stamping Journal, Jan. (2006) pp. 32–33.

  24. E. Taleff et al., J. Materials Engineering and Performance (2009), in press.

  25. O.D. Sherby and P.M. Burke. Progress in Materials Science, 13 (1968), pp. 324–290.

    Article  Google Scholar 

  26. T.G. Nieh, J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics (Cambridge, U.K.: Cambridge University Press, 1997), pp. 43–44.

    Google Scholar 

  27. E.M. Taleff, L.G. Hector, Jr., and P. E. Krajewski. General Motors Research Publication R&D 11,136 (February 2008).

  28. M.-A. Kulas, “Mechanical and Microstructural Characterization of Commerical AA5083 Aluminum Alloys” (Ph.D. thesis, Mechanical Engineering Dept., The University of Texas at Austin, May 2004).

  29. W. Köster, Zeitschrift für Metallkunde, 39 (1948), pp. 7–12.

    Google Scholar 

  30. T.-R. Chen and J.C. Huang, Superplasticity and Superplastic Forming, ed. A.K. Ghosh and Thomas R. Bieler (Warrendale PA: TMS, 1995), pp. 205–212.

    Google Scholar 

  31. Z.X. Guo, J. Pilling, and N. Ridley, Superplasticity and Superplastic Forming, ed. C.H. Hamilton and N.E. Paton (Warrendale, PA: TMS, 1988), pp. 303–308.

    Google Scholar 

  32. H. Huh et al., J. Materials Processing Technology, 49 (1995), pp. 355–369.

    Article  Google Scholar 

  33. A. Dutta, Materials Science and Eng. A, 371 (2004), pp. 79–81.

    Article  Google Scholar 

  34. F.K. Abu-Farha, N.A. Rawashdeh, and M.K. Khraisheh, “Superplastic Deformation of Magnesium AZ31 Under Biaxial Loading Condition,” Materials Science Forum, 551–552 (2007), pp. 219–224.

    Article  Google Scholar 

  35. Y.-Q. Song and Z.C. Wang, Materials Science and Technology, 9 (1993), pp. 57–60.

    Google Scholar 

  36. J.R. Bradley, Superplasticity and Superplastic Forming, ed. E.M. Taleff et al. (Warrendale, PA: TMS, 2004), pp. 109–118.

    Google Scholar 

  37. J. Hallquist, editor, LSDYNA-Theory Manual (Livermore, CA: Livermore Software Technology Corporation, 2006).

    Google Scholar 

  38. A.K. Ghosh and C.H. Hamilton, Proceedings of American Society for Metals, Process Modeling Sessions, Materials and Process (Metals Park, OH, American Society for Metals, 1980), pp. 303–331.

    Google Scholar 

  39. N.R. Harrison et al., Advances in Superplasticity and Superplastic Forming, ed. E.M. Taleff et al. (Warrendale, PA: TMS, 2004), pp. 301–309.

    Google Scholar 

  40. K. Murali, F. Lee, and A. Heath, (Warrendale, PA: SAE International, 2008), SAE 2008-01-1441.

  41. P.E. Krajewski, Trends in Materials and Manufacturing Technologies for Transportation Industries and Powder Metallurgy Research and Development in the Transportation, ed. T.R. Bieler et al. (Warrendale, PA: TMS, 2007), pp. 127–133.

    Google Scholar 

  42. H. Darendeliler, M. Akkok, and C.A. Yucesoy, Tribology International, 35 (2002), pp. 97–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Krajewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, R., Hector, L.G., Krajewski, P.E. et al. The finite element simulation of high-temperature magnesium AZ31 sheet forming. JOM 61, 29–37 (2009). https://doi.org/10.1007/s11837-009-0118-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0118-3

Keywords

Navigation