Skip to main content
Log in

The use of friction stir welding for manufacturing small-scale structures

  • Aluminum / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) is a relatively new joining process and is being used commercially in several industry sectors. In small and medium enterprises, however, this novel technology has not been applied despite its remarkable advantages because of the drawbacks of FSW. A database has been assembled and drawbacks have been analyzed then solved appropriately in the Industry-Government-Academia Collaboration Project. As an outgrowth, the optimum and individual know-how of practical FSW technology could be transferred to medium and small enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Dawes and W.H. Thomas, Weld. J, 75 (1996), pp. 41–45.

    Google Scholar 

  2. T. Tanaka et al., J. Japan Inst. Light Metals, 57 (2007), pp. 549–553 (Japanese).

    Article  Google Scholar 

  3. T. Hirata et al., J. JFJA, 7 (2008), pp. 25–30 (Japa nese).

    MathSciNet  Google Scholar 

  4. H.J. Liu et al., Sci. Tech. Weld. Join., 8 (2003), pp. 450–454.

    Article  Google Scholar 

  5. Y.S. Sato et al., Mater. Sci. Eng. A, 369 (2004), pp. 138–143.

    Article  Google Scholar 

  6. Y.S. Sato et al., Mat. Sci. Eng. A, 354 (2003), pp. 298–305.

    Article  Google Scholar 

  7. T. Hirata et al., Mater. Sci. Eng. A, 456 (2007), pp. 344–349.

    Article  Google Scholar 

  8. H.J. Liu et al., J. Mater. Process. Tech., 142 (2003), pp. 692–696.

    Article  CAS  ADS  Google Scholar 

  9. C. Genevois et al., Acta Mater., 53 (2005), pp. 2447–2458.

    Article  CAS  Google Scholar 

  10. M.A. Sutton et al., Mater. Sci. Eng. A, 354 (2003), pp. 6–16.

    Article  Google Scholar 

  11. K. Elangovan and V. Balasubramanian, Mater. Design, 29 (2008), pp. 362–373.

    Article  CAS  Google Scholar 

  12. D. C. Hofmann and K. S. Vecchio, Mater. Sci. Eng. A 402 (2005), pp. 234–241.

    CAS  Google Scholar 

  13. P. Cavaliere et al., J. Mater. Process. Tech., 180 (2006), pp. 263–270.

    Article  CAS  MathSciNet  Google Scholar 

  14. L. Fratini and G. Buffa, Int. J. Machine Tools & Manufacture, 45 (2005), pp. 1188–1194.

    Article  Google Scholar 

  15. P. Cavaliere and A. Squillace, Mater. Character., 55 (2005), pp. 136–142.

    Article  CAS  Google Scholar 

  16. J.-Q. Su, T.W. Nelson, and C.J. Sterling, Mater. Sci. Eng. A, 405 (2005), pp. 277–286.

    Article  Google Scholar 

  17. M. Dumont et al., Acta Mater., 54 (2006), pp. 4793–4801.

    Article  CAS  Google Scholar 

  18. J.A. Esparza et al., J. Mater. Sci. Lett., 21 (2002), pp. 917–920.

    Article  CAS  Google Scholar 

  19. W. Xunhong and W. Kuaishe, Mater. Sci. Eng. A, 431 (2006), pp. 114–117.

    Article  Google Scholar 

  20. M.B. Kannan et al., Mater. Sci. Eng. A, 460–461 (2007), pp. 243–250.

    Google Scholar 

  21. N. Afrin et al., Mater. Sci. Eng. A, 472 (2008), pp. 179–186.

    Article  Google Scholar 

  22. S.H.C. Park, Y.S. Sato, and H. Kokawa, Scr. Mater., 49 (2003), pp. 161–166.

    Article  CAS  Google Scholar 

  23. J.A. Esparza, W.C. Davis, and L.E. Murr, J. Mater. Sci., 38 (2003), pp. 941–952.

    Article  CAS  Google Scholar 

  24. S.H.C. Park, Y.S. Sato, and H. Kokawa, J. Mater. Sci., 38 (2003), pp. 4379–4383.

    Article  CAS  Google Scholar 

  25. M. Tsujikawa et al., Mater. Trans., 47 (2006), pp. 1077–1081.

    Article  CAS  Google Scholar 

  26. K. Colligan et al., Proc. 3rd Int. FSWSymp. (Cambridge, U.K.: The Welding Institute, 2001).

    Google Scholar 

  27. J.K. Kristensen et al., Proc. 5th Int. FSW Symp. (Cambridge, U.K.: The Welding Institute, 2004).

    Google Scholar 

  28. G. Luetjering and J.C. Williams, Titanium (Berlin: Springer, 2003).

    Google Scholar 

  29. M.J. Donachie Jr., Titanium; A Technical Guide (Metals Park, OH: ASM International, 1988), pp. 131–141.

    Google Scholar 

  30. M. Ikeda et al., Proc. 6th Int. FSW Symp. (Cambridge, U.K.: The Welding Institute, 2006).

    Google Scholar 

  31. S. Oki et al., Mater. Sci. Forum, 539–543 (2007), pp. 3838–3843.

    Google Scholar 

  32. S. Oki et al., Proc. 6th Int. FSWSymp. (Cambridge, U.K.: The Welding Institute, 2006).

    Google Scholar 

  33. Y. Okawa et al., Welding Tech., 55 (2007), pp. 71–75 (Japanese).

    Google Scholar 

  34. M. Tsujikawa et al., Mater. Trans., 46 (2005), pp. 3081–3084.

    Article  CAS  Google Scholar 

  35. M. Tsujikawa et al., Mater. Trans., 48 (2007), pp. 618–621.

    Article  CAS  Google Scholar 

  36. J. Kobata et al., Mater. Lett., 61 (2007), pp. 3771–3773.

    Article  CAS  Google Scholar 

  37. T. Hirata et al., Scr. Mater., 56 (2007), pp. 477–480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, T., Higashi, K. The use of friction stir welding for manufacturing small-scale structures. JOM 62, 42–48 (2010). https://doi.org/10.1007/s11837-010-0030-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-010-0030-x

Keywords

Navigation