Skip to main content
Log in

Introducing Grain Boundary Influenced Stochastic Effects into Constitutive Models

Application to Twin Nucleation in Hexagonal Close-Packed Metals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Twinning is an important deformation mechanism in hexagonal close-packed (hcp) metals such as Mg, Zr, Ti, and Be. Twinning in hcp materials is a multiscale process that depends on microstructural and mechanical response details at the mesoscale, microscale, and atomic scales. Twinning can generally be understood as a two-step process, a nucleation step followed by propagation. The nucleation of twins is governed by both material details such as the defect configurations at potential nucleation sites within grain boundaries, as well as the highly local mechanical field near grain boundaries. These two factors, the material and mechanical, must align for a successful nucleation event. In this article, we present a stochastic constitutive law for nucleation of twins and describe its implementation into a homogenized crystal plasticity simulation. Twin nucleation relies on the dissociation of grain boundary defects under stress into the required twinning partials. This dissociation is considered to follow a Poisson process where the parameters of the Poisson distribution are related to the properties of the grain boundaries. The rate of the process is a direct function of the local stress concentration at the grain boundary. These stress concentrations are randomly sampled from a distribution calibrated to full-field crystal plasticity simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Beyerlein, J. Wang, M. Barnett, and C. Tomé, Proc. R. Soc. A 468, 1496 (2012).

    Article  Google Scholar 

  2. I. Beyerlein and C. Tomé, Proc. R. Soc. A 466, 2517 (2010).

    Article  Google Scholar 

  3. J. Wang and I. Beyerlein, Model. Simul. Mater. Sci. 20, 024002 (2012).

    Article  Google Scholar 

  4. I. Beyerlein, R. McCabe, and C. Tomé, J. Mech. Phys. Solids 59, 988 (2011).

    Article  Google Scholar 

  5. A. Khosravani, D. Fullwood, J. Scott, M. Miles, and R. Mishra, Acta Mater. in press (2012).

  6. A. Bhattacharyya, E. El-Danaf, S. Kalidindi, and R. Doherty, Int. J. Plast. 17, 861 (2001).

    Article  MATH  Google Scholar 

  7. D. Mika and P. Dawson, Mater. Sci. Eng. A, 257, 62 (1998).

    Article  Google Scholar 

  8. F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).

    Article  Google Scholar 

  9. A. Kanjarla, L. Delannay, and P. Van Houtte, Metall. Mater. Trans. A 42, 660 (2011).

    Article  Google Scholar 

  10. H. Moulinec and P. Suquet, Comput. Method Appl. Mech. Eng. 157, 69 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. R.A. Lebensohn, Acta Mater. 49, 2723 (2001).

    Article  Google Scholar 

  12. R. Lebensohn, A. Rollett, and P. Suquet, JOM 63 (3), 13 (2011).

    Article  Google Scholar 

  13. R. Lebensohn and C. Tomé, Acta Metall. Mater. 41, 2611 (1993).

    Article  Google Scholar 

  14. G. Proust, C. Tomé, and G. Kaschner, Acta Mater. 55, 2137 (2007).

    Article  Google Scholar 

  15. A. Salem, S. Kalidindi, and S. Semiatin, Acta Mater. 53, 3495 (2005).

    Article  Google Scholar 

  16. L. Capolungo, P. Marshall, R. McCabe, I. Beyerlein, and C. Tomé, Acta Mater. 57, 6047 (2009).

    Article  Google Scholar 

  17. I. Beyerlein, L. Capolungo, P. Marshall, R. McCabe, and C. Tomé, Philos. Mag. A 90, 2161 (2010).

    Article  Google Scholar 

  18. J. Wang, R. Hoagland, J. Hirth, L. Capolungo, I. Beyerlein, and C. Tomé, Scr. Mater. 61, 903 (2009).

    Article  Google Scholar 

  19. S. Mendelson, J. Appl. Phys. 41, 1893 (1970).

    Article  Google Scholar 

  20. M. Yoo and J. Lee, Philos. Mag. A 63, 987 (1991).

    Article  Google Scholar 

  21. L. Capolungo and I. Beyerlein, Phys. Rev. B 78, 024117 (2008).

    Article  Google Scholar 

  22. D. Cox and V. Isham, Point Processes (Boca Raton, FL: Chapman & Hall/CRC Press, 1980).

    MATH  Google Scholar 

  23. R. Lebensohn, A. Kanjarla, and P. Eisenlohr, Int. J. Plast. 32–33, 59 (2011).

    Google Scholar 

  24. A. Kanjarla, R. Lebensohn, L. Balogh, and C. Tomé, Acta Mater. 60, 3094 (2012).

    Article  Google Scholar 

  25. R. Lebensohn, C. Tomé, and P. Castaneda, Philos. Mag. 87, 4287 (2007).

    Article  Google Scholar 

  26. I. Beyerlein and C. Tomé, Int. J. Plast. 24, 867 (2008).

    Article  MATH  Google Scholar 

  27. A. Thorvaldsen, J. Appl. Phys. 73, 7831 (1993).

    Article  Google Scholar 

  28. DREAM.3D, version 4 (Springboro, OH: BlueQuartz Software and U.S. Air Force Research Laboratory, 2012).

Download references

Acknowledgements

The authors acknowledge full support from the U.S. Department of Energy (DOE), Office of Science, Basic Energy Science, Project FWP 06SCPE401 and Project 20110602ER. Los Alamos National Laboratory is operated by LANS, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Niezgoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niezgoda, S.R., Beyerlein, I.J., Kanjarla, A.K. et al. Introducing Grain Boundary Influenced Stochastic Effects into Constitutive Models. JOM 65, 419–430 (2013). https://doi.org/10.1007/s11837-012-0550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0550-7

Keywords

Navigation