Skip to main content
Log in

Modification Mechanism and Microstructural Characteristics of Eutectic Si in Casting Al-Si Alloys: A Review on Experimental and Numerical Studies

  • Published:
JOM Aims and scope Submit manuscript

Abstract

After more than 80 years of practical experience and despite many noted research efforts, theories that rigorously explained the formation of the silicon eutectic phases and the modification of the morphology of those phases by specific chemical additives remained elusive. Almost all papers related to the growth and modification of silicon in casting Al-Si alloys refer to the importance of twinning and a mechanism called a twin-plane reentrant edge. However, a review paper containing detailed information on how the parallel twins are formed in a crystal during melt growth, why the twins are generated parallel to each other, what is the prerequisite for growing a facetted dendrite, and how effective are various rare earth elements is missing in the literature. A comprehensive review is conducted on the models proposed for the flaky silicon growth including twin-plane reentrant edge and the models proposed for eutectic modification: impurity induced twinning and restricted growth theory. Furthermore, the papers with focus on modifying efficiency of the rare-earth metals have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M.O. Shabani and A. Mazahery, Appl. Math. Model. 35, 5707 (2011).

    Article  Google Scholar 

  2. S.Z. Lu and A. Hellawell, Metall. Mater. Trans. A 18A, 1721 (1987).

    Article  Google Scholar 

  3. M.O. Shabani, A. Mazahery, P. Davami, and M. Razavi, Int. J. Cast Met. Res. 25, 53 (2012).

    Article  Google Scholar 

  4. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu, Mater. Sci. Eng. A 413–414, 243 (2005).

    Article  Google Scholar 

  5. M.O. Shabani and A. Mazahery, Mater. Tech. 46, 109 (2012).

    Google Scholar 

  6. A. Mazahery and M.O. Shabani, J. Mater. Eng. Perf. 21, 247 (2012).

    Article  Google Scholar 

  7. T. Hosch and R.E. Napolitano, Mater. Sci. Eng. A 528, 226 (2010).

    Article  Google Scholar 

  8. D.R. Hamilton and R.G. Seidensticker, J. Appl. Phys. 34, 1450 (1963).

    Article  Google Scholar 

  9. K. Fujiwara, K. Maeda, N. Usami, and K. Nakajima, Phys. Rev. Lett. 101, (2008) Article ID 055503.

  10. T. Aoyama, Y. Takamura, and K. Kuribayashi, Metall. Mater. Trans. A 30, 1333 (1999).

    Article  Google Scholar 

  11. C.F. Lau and H.W. Kui, Acta Metall. Mater. 39, 323 (1991).

    Article  Google Scholar 

  12. D. Li and D.M. Herlach, Phys. Rev. Lett. 77, 1801 (1996).

    Article  Google Scholar 

  13. K. Fujiwara, H. Fukuda, N. Usami, K. Nakajima, and S. Uda, Phys. Rev. B 81 (22), (2010) Article ID 224106.

  14. E. Billig and P.J. Holmes, Acta Crystallogr. 8, 353 (1955).

    Article  Google Scholar 

  15. R.Y. Wang, W.H. Lu, and L. Hogan, Metall. Mater. Trans. A 28A, 1233 (1997).

    Article  Google Scholar 

  16. R.W. Cahn, Adv. Phys. 3, 363 (1954).

    Article  Google Scholar 

  17. M. Kitamura, et al., J. Cryst. Growth 280, 419 (2005).

    Article  Google Scholar 

  18. K.A. Jackson, K.M. Beatty, and K.A. Gudgel, J. Cryst. Growth 271, 481 (2004).

    Article  Google Scholar 

  19. K. Fujiwara, K. Nakajima, T. Ujihara, N. Usami, G. Sazaki, H. Hasegawa, S. Mizoguchi, and K. Nakajima, J. Cryst. Growth 243, 275 (2002).

    Article  Google Scholar 

  20. K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, and K. Nakajima, J. Cryst. Growth 266, 441 (2004).

    Article  Google Scholar 

  21. K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, and K. Nakajima, Scripta Mater. 57, 81 (2007).

    Article  Google Scholar 

  22. I. Sunagawa and T. Yasuda, J. Cryst. Growth 65, 43 (1983).

    Article  Google Scholar 

  23. M. Kitamura, S. Hosoya, and I. Sunagawa, J. Cryst. Growth 47, 93 (1979).

    Article  Google Scholar 

  24. K. Nagashio and K. Kuribayashi, Acta Mater. 53, 3021 (2005).

    Article  Google Scholar 

  25. G. Devaud and D. Turnbull, Acta Metall. 35, 765 (1987).

    Article  Google Scholar 

  26. K.K. Leung and H.W. Kui, J. Appl. Phys. 75, 1216 (1994).

    Article  Google Scholar 

  27. C.F. Lau and H.W. Kui, Acta Metall. Mater. 41, 1999 (1993).

    Article  Google Scholar 

  28. D. Li and D.M. Herlach, J. Mater. Sci. 32, 1437 (1997).

    Article  Google Scholar 

  29. S.E. Battersby, R.F. Cochrane, and A.M. Mullis, J. Mater. Sci. 34, 2049 (1999).

    Article  Google Scholar 

  30. T. Aoyama and K. Kuribayashi, Acta Mater. 48, 3739 (2000).

    Article  Google Scholar 

  31. Z. Jian, K. Nagashio, and K. Kuribayashi, Metall. Mater. Trans. A 33A, 2947 (2002).

    Article  Google Scholar 

  32. R.P. Liu, T. Volkmann, and D.M. Herlach, Acta Mater. 49, 439 (2001).

    Article  Google Scholar 

  33. M. Kohyama, R. Yamamoto, and M. Doyama, Phys. Status Solidi B 138, 387 (1986).

    Article  Google Scholar 

  34. M.G. Day and A. Hellawell, Proc. R. Soc. 305, 473 (1968).

    Article  Google Scholar 

  35. S.D. McDonald, K. Nogita, and A.K. Dahle, Acta Mater. 52, 4273 (2004).

    Article  Google Scholar 

  36. B.M. Thall and B. Chalmers, J. Inst. Met. 77, 79 (1950).

    Google Scholar 

  37. S. Farahany, A. Ourdjini, M. Idrsi, and S.G. Shabestari, Thermochim. Acta 559, 59 (2013).

    Article  Google Scholar 

  38. V. Davies and J. West, J. Inst. Met. 92, 175 (1963–1964).

  39. K.F. Kobayashi and L.M. Hogan, J. Mater. Sci. 20, 1961 (1985).

    Article  Google Scholar 

  40. S.C. Flood and J.D. Hunt, Met. Sci. 15, 287 (1981).

    Article  Google Scholar 

  41. A.K. Dahle, K. Nogita, J.W. Zindel, S.D. McDonald, and L.M. Hogan, Metall. Mater. Trans. A 32A, 949 (2001).

    Article  Google Scholar 

  42. K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, and A.K. Dahle, J. Electron Microsc. 53, 361 (2004).

    Article  Google Scholar 

  43. S. Shankar, Y.W. Riddle, and M.M. Makhlouf, Acta Mater. 52, 4447 (2004).

    Article  Google Scholar 

  44. J. Campbell and M. Tiryakioglu, Mater. Sci. Technol. 26, 262 (2010).

    Article  Google Scholar 

  45. L.M. Hogan and M. Shamsuzzoha, Met. Forum 10, 270 (1987).

    Google Scholar 

  46. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (New York: Chapman & Hall, 1992).

    Book  Google Scholar 

  47. K. Nogita, H. Yasuda, K. Yoshida, K. Uesugi, A. Takeuchi, Y. Suzuki, and A.K. Dahle, Scripta Mater. 55, 787 (2006).

    Article  Google Scholar 

  48. K. Nogita, H. Yasuda, M. Yoshiya, S.D. McDonald, K. Uesugi, A. Takeuchi, and Y. Suzuki, J. Alloy Compd. 489, 415 (2010).

    Article  Google Scholar 

  49. M. Timpel, N. Wanderka, and R. Schlesiger, Acta Mater. 60, 3920 (2012).

    Article  Google Scholar 

  50. K. Nogita, A. Knuutinen, S.D. McDonald, and A.K. Dahle, Mater. Trans. 45, 323 (2004).

    Article  Google Scholar 

  51. Y.C. Tsai, C.Y. Chou, S.L. Lee, C.K. Lin, J.C. Lin, and S.W. Lim, J. Alloy Compd. 487, 157 (2009).

    Article  Google Scholar 

  52. H. Na, X.F. Bian, K.B. Yin, and X.J. Yao, J. Rare Earth 23, 474 (2005).

    Google Scholar 

  53. Y. Tsai, S. Lee, and C. Lin, J. Chin. Inst. Eng. 34, 609 (2011).

    Article  Google Scholar 

  54. W. Prukkanon, N. Srisukhumbowornchai, and C. Limmaneevichitr, J. Alloy Compd. 477, 454 (2009).

    Article  Google Scholar 

  55. B. Li, H.W. Wang, J.C. Jie, and Z.J. Wei, Mater. Des. 32, 1617 (2011).

    Article  Google Scholar 

  56. J.E. Gruzleski and B.M. Glosset, The Treatment of Liquid Aluminum–Silicon Alloys (Des Plaines, IL: American Foundrymen’s Society, Inc., 1990).

  57. S. Shabestari and S. Ghodrat, Mater. Sci. Eng. A 467, 150 (2007).

    Article  Google Scholar 

  58. Q. Hongxu and Y. Hong, J. Alloy Compd. 567, 77 (2013).

    Article  Google Scholar 

  59. A. Mazahery and M.O. Shabani, Powder Technol. 225, 101 (2012).

    Article  Google Scholar 

  60. M.O. Shabani and A. Mazahery, Appl. Math. Model. 36, 5455 (2012).

    Article  Google Scholar 

  61. M.O. Shabani and A. Mazahery, Metall. Mater. Trans. A 43, 2158 (2012).

    Article  Google Scholar 

  62. A. Mazahery and M.O. Shabani, JOM 64, 323 (2012).

    Article  Google Scholar 

  63. M.O. Shabani and A. Mazahery, Ceram. Int. 38, 4541 (2012).

    Article  Google Scholar 

  64. M.O. Shabani and A. Mazahery, Mater. Technol. 46, 2 (2012).

    Google Scholar 

  65. M.O. Shabani and A. Mazahery, Indian J. Eng. Mater. Sci. 19, 129 (2012).

    Google Scholar 

  66. M.O. Shabani and A. Mazahery, Trans. Indian Inst. Met. 65, 77 (2012).

    Article  Google Scholar 

  67. M.O. Shabani and A. Mazahery, Acta Metall. Mater. 56, 671 (2011).

    Google Scholar 

  68. M.O. Shabani and A. Mazahery, Composites B 45, 185 (2013).

    Article  Google Scholar 

  69. M.O. Shabani, A. Mazahery, A. Bahmani, P. Davami, and N. Varahram, Kovove Mater. 49, 253 (2011).

    Google Scholar 

  70. M.O. Shabani and A. Mazahery, JOM 63, 132 (2011).

    Article  Google Scholar 

  71. A. Mazahery and M.O. Shabani, Metall. Mater. Trans. A 43, 5279 (2012).

    Article  Google Scholar 

  72. M.O. Shabani, M. Alizadeh, and A. Mazahery, Fatigue Fract. Eng. M 34, 1035 (2011).

    Article  Google Scholar 

  73. A.A. Tofigh and M.O. Shabani, Acta Metall. Slovaca 19, 94 (2013).

    Article  Google Scholar 

  74. A.A. Tofigh and M.O. Shabani, Ceram. Int. 39, 7483 (2013).

    Article  Google Scholar 

  75. M.O. Shabani, A. Mazahery, M.R. Rahimipour, A.A. Tofigh, and M. Razavi, Kovove Mater. 50, 25 (2012).

    Google Scholar 

  76. I.N. Stranski, Discuss. Faraday Soc. 5, 13 (1949).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Austrian Research Promotion Agency (FFG), the Federal Ministry for Transport, Innovation and Technology (bmvit) and the State of Upper Austria for sponsoring this research work in the framework of COMET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ostad Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazahery, A., Shabani, M.O. Modification Mechanism and Microstructural Characteristics of Eutectic Si in Casting Al-Si Alloys: A Review on Experimental and Numerical Studies. JOM 66, 726–738 (2014). https://doi.org/10.1007/s11837-014-0968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-0968-1

Keywords

Navigation