Skip to main content
Log in

High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.-H. Wu, C.-C. Yang, and J.-W. Yeh, Ann. Chim. Sci. Mater. 31, 737 (2006).

    Article  Google Scholar 

  2. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, Mater. Sci. Forum 560, 1 (2007).

    Article  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  4. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  5. Y. Zhang and Z. Yunjun, Mater. Sci. Forum 561–565, 1337 (2007).

    Article  Google Scholar 

  6. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).

    Article  Google Scholar 

  7. J.-W. Yeh, JOM 65, 1759 (2013).

    Article  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Progr. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  9. P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Adv. Eng. Mater. 6, 74 (2004).

    Article  Google Scholar 

  10. T.-T. Shun, C.-H. Hung, and C.-F. Lee, J. Alloys Compd. 493, 105 (2010).

    Article  Google Scholar 

  11. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 7210 (2010).

    Article  Google Scholar 

  12. A. Cunliffe, J. Plummer, I. Figueroa, and I. Todd, Intermetallics 23, 204 (2012).

    Article  Google Scholar 

  13. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  14. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).

    Article  Google Scholar 

  15. A.K. Singh and A. Subramaniam, J. Alloy Compd. 587, 113 (2014).

    Article  Google Scholar 

  16. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, CALPHAD 45, 1 (2014).

    Article  Google Scholar 

  17. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  18. J. Jiang and X. Luo, Adv. Mater. Res. 652–654, 1115 (2013).

    Article  Google Scholar 

  19. H. Zhang, Q.T. Wang, Q.H. Tang, and P.Q. Dai, Corros. Protec. 34, 561 (2013).

    MATH  Google Scholar 

  20. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Acta Mater. 59, 6308 (2011).

    Article  Google Scholar 

  21. M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Surf. Coat. Technol. 221, 118 (2013).

    Article  Google Scholar 

  22. C. Huang, Y. Zhang, J. Shen, and R. Vilar, Surf. Coat. Technol. 206, 1389 (2011).

    Article  Google Scholar 

  23. C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, and A.L. Zhang, J. Alloy Compd. 583, 162 (2014).

    Article  Google Scholar 

  24. O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle, J. Mater. Sci. 47, 6522 (2012).

    Article  Google Scholar 

  25. W.J. Shen, M.H. Tsai, K.Y. Tsai, C.C. Juan, C.W. Tsai, J.W. Yeh, and Y.S. Chang, J. Electrochem. Soc. 160, C531 (2013).

    Article  Google Scholar 

  26. K.-H. Cheng, C.-W. Tsai, S.-J. Lin, and J.-W. Yeh, J. Phys. D Appl. Phys. 44, 205405 (2011).

    Article  Google Scholar 

  27. D. Tomus and H.P. Ng, Micron 44, 115 (2013).

    Article  Google Scholar 

  28. ES Vision (FEI-Company, Hillsboro, OR, 2004).

  29. M.C. Flemmings, Solidification Processing (New York: McGraw-Hill, 1974).

    Google Scholar 

  30. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Dürnten: Trans Tech Publications Ltd., 1998).

    Google Scholar 

  31. H. Fredriksson and U. Åkerlind, Materials Processing During Casting (Hoboken: Wiley, 2006).

    Book  Google Scholar 

  32. W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  33. W.-R. Wang, W.-L. Wang, and J.-W. Yeh, J. Alloy Compd. 589, 143 (2014).

    Article  Google Scholar 

  34. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Second Edition (Boston: PWSKent, 1992).

  35. B. Bartova, N. Wiese, D. Schryvers, J.N. Chapman, and S. Ignacova, Acta Mater. 56, 4470 (2008).

    Article  Google Scholar 

  36. H.E. Karaca, I. Karaman, D.C. Lagoudas, H.J. Maier, and Y.I. Chumlyakov, Scripta Mater. 49, 831 (2003).

    Article  Google Scholar 

  37. P.L. Potapov, P. Ochin, J. Pons, and D. Schryvers, Acta Mater. 48, 3833 (2000).

    Article  Google Scholar 

  38. Y. Tanaka, T. Ohmori, K. Oikawa, R. Kainuma, and K. Ishida, Metall. Mater. Trans. 45, 427 (2004).

    Google Scholar 

  39. H.M. Daoud, A. Manzoni, R. Volkl, N. Wanderka, and U. Glatzel, JOM 65, 1805 (2013).

    Article  Google Scholar 

  40. D. Schryvers, P. Boullay, P.L. Potapov, R.V. Kohn, and J.M. Ball, Int. J. Solids Struct. 39, 3543 (2002).

    Article  Google Scholar 

  41. C.S. Giggins and F.S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Article  Google Scholar 

  42. U. Krupp and H.J. Christ, Metall. Mater. Trans. A 31, 47 (2000).

    Article  Google Scholar 

  43. S. Han and D.J. Young, Oxid. Met. 55, 223 (2001).

    Article  Google Scholar 

  44. H. Ackermann, G. Teneva-Kosseva, H. Köhne, K. Lucka, S. Richter, and J. Mayer, Mater. Corros. 59, 380 (2008).

    Article  Google Scholar 

  45. M.P. Brady, Y. Yamamoto, B.A. Pint, M.L. Santella, P.J. Maziasz, and L.R. Walker, High Temperature Corrosion and Protection of Materials, ed. P. Steinmetz, I.G. Wright, A. Galerie, D. Monceau, and S. Mathieu (Dürnten: TransTech Publications Ltd., 2008), pp. 725–732.

    Google Scholar 

  46. I. Peter, A. Zago, M. ActisGrande, and D. Ugues, Surf. Coat. Technol. 203, 1776 (2009).

    Article  Google Scholar 

  47. C. Jang, D. Kim, D. Kim, I. Sah, W.-S. Ryu, and Y.-S. Yoo, Trans. Nonfer. Metals Soc. China 21, 1524 (2011).

    Article  Google Scholar 

  48. J.P. Alfano (Ph.D. dissertation, The University of Alabama, 2013).

  49. G.B. Gibbs and R. Hales, Corros. Sci. 17, 487 (1977).

    Article  Google Scholar 

  50. Y. Shida, G.C. Wood, F.H. Stott, D.P. Whittle, and B.D. Bastow, Corros. Sci. 21, 581 (1981).

    Article  Google Scholar 

  51. P. Kofstad, High Temperature Corrosion (New York: Elsevier, 1988).

    Google Scholar 

  52. N. Birks, G.H. Meier, and F.S. Pettit, High-Temperature Oxidation of Metals, 2nd ed. (Cambridge: Cambridge University Press, 2006).

    Book  Google Scholar 

  53. D. Young, High Temperature Oxidation and Corrosion of Metals (Philadelphia: Elsevier, 2008).

    Google Scholar 

  54. T.M. Butler and M.L. Weaver, The University of Alabama, unpublished research (2014).

  55. V.P. Deodeshmukh, S.J. Matthews, and D.L. Klarstrom, Int. J. Hydrog. Energy 36, 4580 (2011).

    Article  Google Scholar 

  56. X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del-Gallo, and M. Wagner, Oxid. Met. 80, 25 (2013).

    Article  Google Scholar 

  57. G.R. Wallwork and A.Z. Hed, Oxid. Met. 3, 171 (1971).

    Article  Google Scholar 

  58. J.-W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Article  Google Scholar 

  59. S.-Y. Chang, C.-E. Li, Y.-C. Huang, H.-F. Hsu, J.-W. Yeh, and S.-J. Lin, Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High Entropy Materials (Scientific Report) (New York: Macmillan Publishers Limited, 2014).

    Google Scholar 

  60. Z. Tang, L. Huang, W. He, and P.K. Liaw, Entropy 16, 895 (2014).

    Article  Google Scholar 

  61. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

  62. S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards, J. Alloy Compd. 599, 179 (2014).

    Article  Google Scholar 

  63. G.R. Wallwork, Oxid. Met. 3, 213 (1971).

    Article  Google Scholar 

  64. P. Tomaszewicz and G.R. Wallwork, Rev. High Temp. Mater. 4, 75 (1978).

    Google Scholar 

  65. F.H. Stott and G.C. Wood, Corros. Sci. 11, 799 (1971).

    Article  Google Scholar 

  66. J.L. Smialek and G.H. Meier, Superalloys II, ed. C.T. Sims, N.S. Stoloff, and W.C. Hagel (New York: Wiley, 1987), pp. 293–326.

    Google Scholar 

  67. Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Science 316, 433 (2007).

    Article  Google Scholar 

  68. M.P. Brady, Y. Yamamoto, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, and M.L. Santella, Stainl. Steel World 20, 1 (2008).

    Google Scholar 

  69. I. Baker, H. Wu, X. Wu, M.K. Miller, and P.R. Munroe, Mater. Charact. 62, 952 (2011).

    Article  Google Scholar 

  70. R.D. Heidenreich and E.A. Nesbitt, J. Appl. Phys. 23, 352 (1952).

    Article  Google Scholar 

Download references

Acknowledgement

This work used resources owned and maintained by the Central Analytical Facility (CAF), which is supported by the University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Weaver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, T.M., Alfano, J.P., Martens, R.L. et al. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys. JOM 67, 246–259 (2015). https://doi.org/10.1007/s11837-014-1185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1185-7

Keywords

Navigation