Skip to main content
Log in

Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. In this article, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insights into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa–Kohn–Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. We also discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles “high-throughput” density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. The model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In this article, we reserve the term HEA for systems that are single-phase solid solutions despite the fact that the term is often used more generally for alloys that, while being multi-component and concentered, may actually exhibit multiple phases—on some (typically microstructural) length-scale.

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  2. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Article  Google Scholar 

  3. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, JOM 66, 1984 (2014).

    Article  Google Scholar 

  4. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  5. K.B. Zhang and Z. Fu, Intermetallics 22, 24 (2012).

    Article  MathSciNet  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  7. H. Tong, M. Chen, S. Chen, J.W. Yeh, T. Shun, S. Lin, and S. Chang, Metall. Mater. Trans. A 36A, 1263 (2005).

    Article  Google Scholar 

  8. M. Tsai, C. Wang, C. Tsai, W. Shen, J.W. Yeh, J. Gan, and W. Wu, J. Electrochem. Soc. 158, G1161 (2011).

    Article  Google Scholar 

  9. Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corros. Sci. 47, 2257 (2005).

    Article  Google Scholar 

  10. C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Metall. Mater. Trans. A 35A, 1465 (2004).

    Article  Google Scholar 

  11. J. Wu, S. Lin, J.W. Yeh, S. Chen, Y. Huang, and H. Chen, Wear 261, 513 (2006).

    Article  Google Scholar 

  12. K.C. Hsieh, C.F. Yu, W.T. Hsieh, W.R. Chiang, J.S. Ku, J.H. Lai, C.P. Tu, and C.C. Yang, J. Alloys Compd. 483, 209 (2009).

    Article  Google Scholar 

  13. Y. Wang, B.S. Li, and H.Z. Fu, Adv. Eng. Mater. 11, 641 (2009).

    Article  Google Scholar 

  14. C. Hsu, W. Wang, W. Tang, S. Chen, and J.W. Yeh, Adv. Eng. Mater. 12, 44 (2010).

    Article  Google Scholar 

  15. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).

    Google Scholar 

  16. A. Manzoni, H. Daoud, S. Mondal, S. van Smaalen, R. Völkl, U. Glatzel, and N. Wanderka, J. Alloys Compd. 552, 430 (2013).

    Article  Google Scholar 

  17. M.S. Lucas, L. Mauger, J.A. Muñoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, J. Appl. Phys. 109, 07E307 (2011).

    Article  Google Scholar 

  18. O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).

    Article  Google Scholar 

  19. H. Bei, Materials Science and Technology Division, Oak Ridge National Laboratory, private communication.

  20. J.W. Yeh, S.K. Chen, S. Lin, J. Gan, T. Chin, T.T. Shun, C. Tsau, and S. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  21. W. Hume-Rothery and H.M. Powell, Z. Krist. 91, 23 (1935).

    Google Scholar 

  22. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  23. X. Yang and Y. Zhang, Mater. Phys. Chem. 132, 233 (2012).

    Article  Google Scholar 

  24. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  25. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  26. F. Otto, Y. Yanga, H. Beia, and E.P. George, Acta Mater. 61, 2628 (2013).

    Article  Google Scholar 

  27. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  Google Scholar 

  28. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  Google Scholar 

  29. M.A.L. Marques, M.J.T. Oliveira, and T. Burnus, Comput. Phys. Commun. 183, 2272 (2012).

    Article  Google Scholar 

  30. S.G. Louie and M.L. Cohen, Conceptual Foundations of Materials. A Standard Model for Ground- and Excited-State Properties. Contemporary Concepts of Condensed Matter Science, 1st ed., Vol. 2 (Oxford: Elsevier, 2006).

    Google Scholar 

  31. P. Söderlind, P.E.A. Turchi, A. Landa, and V. Lordi, J. Phys.: Condens. Matter 26, 416001 (2014).

    Google Scholar 

  32. Alloy Theoretic Automated Toolkit, http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/.

  33. P. Soven, Phys. Rev. 156, 809 (1967).

    Article  Google Scholar 

  34. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  35. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, Phys. Rev. Lett. 91, 135503 (2003).

    Article  Google Scholar 

  36. D. Morgan, G. Ceder, and S. Curtarolo, JOM 56, 70 (2004).

    Article  Google Scholar 

  37. G.L.W. Hart, S. Curtarolo, T.B. Massalski, and O. Levy, Phys. Rev. X 3, 041035 (2013).

    Google Scholar 

  38. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nat. Mater. 12, 191 (2013).

    Article  Google Scholar 

  39. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, and O. Levy, Comp. Mater. Sci. 58, 227 (2012).

    Article  Google Scholar 

  40. The data from the alloy database of Widom et al. is based on electronic density functional calculations using VASP performed by Mihalkovic, Widom et al. (http://alloy.phys.cmu.edu).

  41. C.S. Wang, B.M. Klein, and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).

    Article  Google Scholar 

  42. D.J. Singh, W.E. Pickett, and H. Krakauer, Phys. Rev. B 43, 11628 (1991).

    Article  Google Scholar 

  43. J. Zhu, X.W. Wang, and S.G. Louie, Phys. Rev. B 45, 8887 (1992).

    Article  Google Scholar 

  44. M.G. Poletti and L. Battezzati, Acta Mater. 75, 297 (2014).

    Article  Google Scholar 

  45. A. Manzoni, H. Daoud, R. Völkl, U. Glatzel, and N. Wanderka, Ultramicroscopy 132, 212 (2013).

    Article  Google Scholar 

  46. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Nat. Commun. 6, 5964 (2015).

    Article  Google Scholar 

  47. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  48. O.N. Senkov, J.D. Miller, D.B. Miracles, and C. Woodward, CALPHAD 50, 32 (2015).

    Article  Google Scholar 

  49. M. Widom, W.P. Huhn, S. Maiti, and W. Steurer, Metall. Mater. Trans. A 45, 196 (2014).

    Article  Google Scholar 

  50. M. Widom, High Entropy Alloys: Fundamentals and Applications, ed. M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang (New York: Springer, 2015),

    Google Scholar 

  51. B.L. Györffy, Phys. Rev. B 5, 2382 (1972).

    Article  Google Scholar 

  52. G.M. Stocks, W.M. Temmerman, and B.L. Gyorffy, Phys. Rev. Lett. 41, 339 (1978).

    Article  Google Scholar 

  53. S. Faulkner and G.M. Stocks, Phys. Rev. B 21, 3222 (1980).

    Article  Google Scholar 

  54. D.D. Johnson, D.M. Nicholson, R.J. Pinski, B.L. Gyorffy, and G.M. Stocks, Phys. Rev. Lett. 56, 2088 (1986).

    Article  Google Scholar 

  55. D.A. Rowlands, J.B. Staunton, and B.L. Györffy, Phys. Rev. B 67, 115109 (2003).

    Article  Google Scholar 

  56. Y. Wang, G.M. Stocks, W.A. Shelton, D.M.C. Nicholson, W.M. Temmerman, and Z. Szotek, Phys. Rev. Lett. 75, 2867 (1995).

    Article  Google Scholar 

  57. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Acta Mater. 61, 4887 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering (M.C.T., G.M.S., J.R.M., and A.R.L.). This research used resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. The work of M.D. was supported by the Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory under tracking code No. 13-ERD-044. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Claudia Troparevsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troparevsky, M.C., Morris, J.R., Daene, M. et al. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys. JOM 67, 2350–2363 (2015). https://doi.org/10.1007/s11837-015-1594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1594-2

Keywords

Navigation