Skip to main content
Log in

Thermoelectric Properties of Pristine and Doped Graphene Nanosheets and Graphene Nanoribbons: Part I

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Thermal conductivity of pristine and doped graphene nanosheets and nanoribbons has been studied as a function of their width and length using non-equilibrium molecular dynamics simulations. Calculations of electronic thermal conductivity are presented for these structures using density functional theory (DFT). Effects of p- and n-type doping, presence of vacancies, effect of number of layers, and temperature have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. N.S. Sankeshwar, S.S. Kubakaddi, and B.G. Mulimani, Advances in Graphene Science, ed. D. M. Aliofkhazraei (InTech, 2013), pp. 217–271.

  3. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (New York: Taylor & Francis, 2010).

    Google Scholar 

  4. A. Bejan, and A.D. Kraus, Heat Transfer Handbook (New Jersey: John Wiley & Sons, 2003).

    Google Scholar 

  5. T. Tritt, Recent Trends in Thermoelectric Materials Research, Part Two (New York: Elsevier Science, 2000).

    Google Scholar 

  6. X. Tan, H. Liu, Y. Wen, H. Lv, L. Pan, J. Shi, and X. Tang, Nanoscale Res. Lett. 7, 116 (2012).

    Article  Google Scholar 

  7. Y.M. Zuev, W. Chang, and P. Kim, Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  8. P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Phys. Rev. Lett. 102, 166808 (2009).

    Article  Google Scholar 

  9. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  10. S.D. Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

    Article  Google Scholar 

  11. S.V. Muley, and N.M. Ravindra, JOM 66, 616 (2014).

    Article  Google Scholar 

  12. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge: Cambridge University Press, 2012).

    Book  Google Scholar 

  13. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  14. C. Sevik, A. Kinaci, J.B. Haskins, and T. Çağın, Phys. Rev. B. 84, 085409 (2011).

    Article  Google Scholar 

  15. C. Sevik, A. Kinaci, J.B. Haskins, and T. Çağın, Phys. Rev. B. 86, 075403 (2012).

    Article  Google Scholar 

  16. F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).

    Article  Google Scholar 

  17. S.B.P. Giannozzi, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009).

    Article  Google Scholar 

  18. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics. 14, 33 (1996).

    Article  Google Scholar 

  19. D.D. Koelling, and J.H. Wood, J. Comput. Phys. 67, 253 (1986).

    Article  Google Scholar 

  20. G.K. Madsen, and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  21. J. Chen, G. Zhang, and B. Li, Nanoscale 5, 532 (2013).

    Article  Google Scholar 

  22. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008).

    Article  Google Scholar 

  23. P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  Google Scholar 

  24. L. Lindsay, and D.A. Broido, Phys. Rev. B. 81, 205441 (2010).

    Article  Google Scholar 

  25. L. Lindsay, D.A. Broido, and N. Mingo, Phys. Rev. B. 82, 161402 (2010).

    Article  Google Scholar 

  26. X. Xu, L.F.C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J.T.L. Thong, B.H. Hong, K.P. Loh, D. Donadio, B. Li, and B. Özyilmaz, Nat. Commun. 5, 1–6 (2014).

    Google Scholar 

  27. T. Yamamoto, K. Watanabe, and K. Mii, Phys. Rev. B. 70, 245402 (2004).

    Article  Google Scholar 

  28. Z. Guo, D. Zhang, and X.-G. Gong, Appl. Phys. Lett. 95, 163103 (2009).

    Article  Google Scholar 

  29. B. Mortazavi, and S. Ahzi, Solid State Commun. 152, 1503 (2012).

    Article  Google Scholar 

  30. B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Rémond, and S.M.V. Allaei, Solid State Commun. 152, 261 (2012).

    Article  Google Scholar 

  31. H. Zhang, G. Lee, and K. Cho, Phys. Rev. B. 84, 115460 (2011).

    Article  Google Scholar 

  32. A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Ms. Soumya R. Belur for her assistance with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ravindra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muley, S.V., Ravindra, N.M. Thermoelectric Properties of Pristine and Doped Graphene Nanosheets and Graphene Nanoribbons: Part I. JOM 68, 1653–1659 (2016). https://doi.org/10.1007/s11837-016-1871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1871-8

Keywords

Navigation