Skip to main content
Log in

Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A. Dantzig and M. Rappaz, Solidification, 1st ed. (Lausanne: EPFL Press, 2009).

    Book  MATH  Google Scholar 

  2. C. Beckermann, Int. Mater. Rev. 47, 243 (2002).

    Article  Google Scholar 

  3. G. Lesoult, Mater. Sci. Eng. A 414, 19 (2005).

    Article  Google Scholar 

  4. J. Ni and C. Beckermann, Metall. Trans. B 22B, 349 (1991).

    Article  Google Scholar 

  5. D.R. Poirier, P.J. Nandapurkar, and S. Ganesan, Metall. Trans. B 22, 889 (1991).

    Article  Google Scholar 

  6. P. Bousquet-Melou, B. Goyeau, M. Quintard, F. Fichot, and D. Gobin, Int. J. Heat Mass Transf. 45, 3651 (2002).

    Article  Google Scholar 

  7. S. Whitaker, Transp. Porous Media 25, 27 (1996).

    Article  Google Scholar 

  8. B. Goyeau, T. Benihaddadene, D. Gobin, and M. Quintard, Metall. Mater. Trans. B 30, 613 (1999).

    Article  Google Scholar 

  9. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. De Groh, Metall. Mater. Trans. B 26, 111 (1995).

    Article  Google Scholar 

  10. C.-A. Gandin, G. Guillemot, B. Appolaire, and N.T. Niane, Mater. Sci. Eng. A 342, 44 (2003).

    Article  Google Scholar 

  11. B. Appolaire, H. Combeau, and G. Lesoult, Mater. Sci. Eng. A 487, 33 (2008).

    Article  Google Scholar 

  12. M. Založnik and H. Combeau, Comput. Mater. Sci. 48, 1 (2010).

    Article  Google Scholar 

  13. H. Combeau, M. Založnik, S. Hans, and P.E. Richy, Metall. Mater. Trans. B 40, 289 (2009).

    Article  Google Scholar 

  14. M. Bedel (Ph.D. Dissertation, Université de Lorraine, Nancy, France (2014).

  15. M. Bedel, K.O. Tveito, M. Založnik, H. Combeau, and M. M’Hamdi, Comput. Mater. Sci. 102, 95 (2015).

    Article  Google Scholar 

  16. M. Rappaz, Int. Mater. Rev. 34, 93 (1989).

    Article  Google Scholar 

  17. G. Lesoult, H. Combeau, and M. Moukassi, J. Phys. IV 3, 813 (1993).

    Google Scholar 

  18. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant, Acta Mater. 70, 228 (2014).

    Article  Google Scholar 

  19. H. Neumann-Heyme, K. Eckert, and C. Beckermann, Phys. Rev. E 92, 1 (2015).

    Article  Google Scholar 

  20. T.E. Quested and A.L. Greer, Acta Mater. 53, 2683 (2005).

    Article  Google Scholar 

  21. M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz, Adv. Eng. Mater. 13, 570 (2011).

    Article  Google Scholar 

  22. H. Combeau, A. Kumar, M. Založnik, I. Poitrault, G. Lacagne, A. Gingell, T. Mazet, and G. Lesoult, International Conference Ingot Casting, Rolling, and Forging (Aachen, Germany, 2012), pp. 27.

  23. J.P. Gu and C. Beckermann, Metall. Mater. Trans. A 30, 1357 (1999).

    Article  Google Scholar 

  24. M.C. Flemings and G.E. Nereo, Trans. Metall. Soc. AIME 239, 1449 (1967).

    Google Scholar 

  25. M. Založnik and H. Combeau, Modeling of Casting Welding and Advanced Solidification Processes XII, ed. S.L. Cockroft and D.M. Maijer (Warrendale, PA: TMS, 2009), pp. 165.

  26. N. Leriche, H. Combeau, C.-A. Gandin, M. Založnik, and I.O.P. Conf, Ser. Mater. Sci. Eng. 84, 012087 (2015).

    Google Scholar 

  27. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 48, 2823 (2000).

    Article  Google Scholar 

  28. M. Bedel, L. Heyvaert, M. Založnik, H. Combeau, D. Daloz, G. Lesoult, and I.O.P. Conf, Ser. Mater. Sci. Eng. 84, 012100 (2015).

    Google Scholar 

  29. A. Joly, G.-U. Grün, D. Daloz, H. Combeau, and G. Lesoult, Mater. Sci. Forum 329–330, 111 (2000).

    Article  Google Scholar 

  30. A. Tronche, Ph.D. Dissertation, University of Cambridge (2000).

  31. G. Lesoult, V. Albert, B. Appolaire, H. Combeau, D. Daloz, A. Joly, C. Stomp, G.-U. Grün, and P. Jarry, Sci. Technol. Adv. Mater. 2, 285 (2001).

    Article  Google Scholar 

  32. D. Daloz, H. Combeau, A. Joly, G. Lesoult, G.-U. Grün, P. Jarry, and B. Commet, Matériaux 2002, de la conception à la mise en oeuvre (Tours, France, 2002).

  33. K.O. Tveito, M. Bedel, M. Založnik, H. Combeau, M. M’Hamdi, and I.O.P. Conf, Ser. Mater. Sci. Eng. 27, 012040 (2012).

    Google Scholar 

  34. H. Yu and D.A. Granger, Aluminium Alloys: Their Physical and Mechanical Properties (Sheffield: EMAS, 1986), pp. 17.

    Google Scholar 

  35. T.L. Finn, M.G. Chu, and W.D. Bennon, Micro/Macro Scale Phenomena in Solidification, eds. C. Beckermann, L.A. Bertram, S.J. Pien, and R.E. Smelser (New York: ASME, 1992), pp. 17.

  36. D.G. Eskin, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys (Boca Raton: CRC Press, 2008).

    Book  Google Scholar 

  37. D.G. Eskin, R. Nadella, and L. Katgerman, Acta Mater. 56, 1358 (2008).

    Article  Google Scholar 

  38. R. Nadella, D.G. Eskin, and L. Katgerman, Metall. Mater. Trans. A 39, 450 (2008).

    Article  Google Scholar 

  39. R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman, Prog. Mater Sci. 53, 421 (2008).

    Article  Google Scholar 

  40. D.G. Eskin, A. Jafari, and L. Katgerman, Mater. Sci. Technol. 27, 890 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the French State for support through the program “Investment in the future” operated by the National Research Agency (ANR) and referenced by ANR-11 LABX-0008-01 (LabEx DAMAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Combeau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combeau, H., Založnik, M. & Bedel, M. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum. JOM 68, 2198–2206 (2016). https://doi.org/10.1007/s11837-016-1993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1993-z

Keywords

Navigation