Skip to main content
Log in

Understanding Characteristic of Abrasion of Refractory Lining Caused by Bath Oscillation in BOF Steelmaking

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper presents a numerical study of the refractory abrasion occurring widely inside basic oxygen furnace (BOF) steelmaking. The mechanism of refractory abrasion is examined numerically referring to the bath oscillation with regard to flows, turbulence and wall shear stress inside a BOF. The simulation results reveal that the refractory abrasion tends to occur on the wall region between the slag/atmosphere and slag/metal interfaces due to the oscillation of the bath in the blowing process, which generally promotes slag-line erosion. The decreased nozzle angle, and either increased lance height or operation pressure can lead to more serious refractory erosion that occurs more likely during the slag-making period in the operation of BOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Lee, S.L. O’Rourke, and N.A. Molloy, Scand. J. Metall. 32, 281 (2003).

    Article  Google Scholar 

  2. H.-J. Odenthal, J. Kempken, J. Schlüter, and W.H. Emling, Iron Steel Tech. 4, 71 (2007).

    Google Scholar 

  3. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Metall. Mater. Trans. B 46, 1494 (2015).

    Article  Google Scholar 

  4. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou, Ind. Eng. Chem. Res. 55, 3630 (2016).

    Article  Google Scholar 

  5. M.S. Lee, S. O’Rourke, and N.A. Molloy, Ironmak. Steelmak. 28, 244 (2001).

    Article  Google Scholar 

  6. K. Thomas, Stahl u. Eisen 50, 1665 (1930).

    Google Scholar 

  7. H.-J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter, Metal. Mater. Trans. B 41, 302 (2010).

    Article  Google Scholar 

  8. L. Shui, Z.X. Cui, X.D. Ma, M.A. Rhamdhani, A.V. Nguyen, and B.J. Zhao, Metall. Mater. Trans. B 47, 135 (2016).

    Article  Google Scholar 

  9. N.A. Molloy, J. Iron Steel Inst. 226, 943 (1970).

    Google Scholar 

  10. K.D. Peaslee and D.G.C. Robertson, Model Studies of Splash, Waves, and Recirculating Flows Within Steelmaking Furnaces (Warrendale, PA: Iron and Steel Society, 1994).

    Google Scholar 

  11. M. Lee, V. Whitney, and N. Molloy, Scand. J. Metall. 30, 330 (2001).

    Article  Google Scholar 

  12. H. Hwang and G.A. Irons, Metal. Mater. Trans. B 43, 302 (2012).

    Article  Google Scholar 

  13. H. Hwang and G.A. Irons, Metal. Mater. Trans. B 42, 575 (2011).

    Article  Google Scholar 

  14. M. Alam, J. Naser, G. Brooks, and A. Fontana, ISIJ Int. 52, 1026 (2012).

    Article  Google Scholar 

  15. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou, Steel Res. Int. 87, 288 (2016).

    Article  Google Scholar 

  16. S. Sabah and G.A. Brooks, ISIJ Int. 54, 836 (2014).

    Article  Google Scholar 

  17. J.Q. Zhang, N.J. Zhou, and H.S. Li, JOM 62, 35 (2010).

    Google Scholar 

  18. M. Ohnishi, J. Nagai, T. Yamamoto, K. Nakai, H. Tacke, and R. Tachibana, Iron Steelmak. 10, 28 (1983).

    Google Scholar 

  19. B.E. Launder and D.B. Spalding, Comput. Meth. Appl. Mech. Eng. 3, 269 (1974).

    Article  Google Scholar 

  20. C.W. Hirt and B.D. Nichols, J. Comp. Phys. 39, 201 (1981).

    Article  Google Scholar 

  21. Q. Li, M.M. Li, S.B. Kuang, and Z.S. Zou, Can Met. Q. 53, 340 (2014).

    Article  Google Scholar 

  22. M.M. Li, Q. Li, L. Li, Y.B. He, and Z.S. Zou, Ironmak. Steelmak. 41, 699 (2014).

    Article  Google Scholar 

  23. M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou, Steel Res. Int. 86, 1517 (2015).

    Article  Google Scholar 

  24. Y.A. Cengel and J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications (New York: McGraw Hill, 2006).

    Google Scholar 

  25. F.R. Cheslak, J.A. Nicholls, and M. Sichel, J. Fluid Mech. 36, 55 (1969).

    Article  Google Scholar 

  26. Y. Li, W.T. Lou, and M.Y. Zhu, Ironmak. Steelmak. 40, 505 (2013).

    Article  Google Scholar 

  27. S.C. Koria and K.W. Lange, Steel Res. Int. 58, 421 (1987).

    Google Scholar 

  28. K. Nakanisih, T. Fujh, and J. Szckely, Ironmak. Steelmak. 2, 193 (1975).

    Google Scholar 

  29. X.B. Zhou, M. Ersson, L.C. Zhong, and P.G. Jönsson, Steel Res. Int. 86, 1328 (2015).

    Article  Google Scholar 

  30. K.P. Du, S.L. Wu, M.Y. Kou, W. Shen, and Z.K. Zhang, Steel Res. Int. 85, 466 (2014).

    Article  Google Scholar 

  31. L. Shao and H. Saxén, Steel Res. Int. 83, 878 (2012).

    Article  Google Scholar 

  32. C.M. Chang, W.T. Cheng, C.E. Huang, and S.W. Du, Int. Commun. Heat Mass Transf. 36, 480 (2009).

    Article  Google Scholar 

  33. C.H. Lin, W.T. Cheng, and S.W. Du, Int. Commun. Heat Mass Transf. 36, 335 (2009).

    Article  Google Scholar 

  34. J. Brännbacka and H. Saxén, Ind. Eng. Chem. Res. 47, 7793 (2008).

    Article  Google Scholar 

  35. J.R. Post, T. Peeters, Y. Yang, and M.A. Reuter, Hot Metal Flow in the Blast Furnace Hearth: Thermal and Carbon Dissolution Effects on Buoyancy, Flow and Refractory Wear (Melbourne: CSIRO, 2003).

    Google Scholar 

  36. A. Preuer, J. Winter, and H. Hiebler, Steel Res. 63, 147 (1992).

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51104037, 50774019) and the Fundamental Research Funds of the Central Universities of China (Grant Nos. N120402010, N140204008) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, M., Kuang, S.B. et al. Understanding Characteristic of Abrasion of Refractory Lining Caused by Bath Oscillation in BOF Steelmaking. JOM 68, 3126–3133 (2016). https://doi.org/10.1007/s11837-016-2078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2078-8

Keywords

Navigation