Skip to main content
Log in

In Situ EBSD Observations of the Evolution in Crystallographic Orientation with Deformation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Automated electron backscatter diffraction (EBSD) analysis is frequently used to investigate the change in crystallographic orientation that occurs when polycrystalline materials deform. Through crystallographic slip, the crystal lattice within a grain rotates. However, the crystal lattice rotation in each grain is constrained by the lattices of the neighboring grains while rotating. These competing factors lead to the development of orientation gradients and substructure in deformed polycrystals. In situ uniaxial tensile deformation was carried out in the scanning electron microscope while employing simultaneous automated EBSD analysis to characterize grain rotation, both in terms of the overall rotation of the lattice and the development of orientation gradients within the grain. The impact of these factors can be seen at the grain boundaries in the deformed structure where the local orientations diverge from the orientation at the grain interior. Automated in situ EBSD analysis allows the quantitative nature of specific metrics based on local variations in orientation to illuminate the physical mechanisms underlying the stress strain response during a mechanical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Wright, G. Gray, and A. Rollett, Metall. Mater. Trans. A 25, 1025 (1994).

    Article  Google Scholar 

  2. S.I. Wright, J. Comput. Assist. Microsc. 5, 207 (1993).

    Google Scholar 

  3. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field, Electron Backscatter Diffraction in Materials Science, 2nd ed. (Berlin: Springer, 2009).

    Book  Google Scholar 

  4. N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field, Mater. Sci. Eng. 548, 56 (2012).

    Article  Google Scholar 

  5. S. Dillien, M. Seefeldt, S. Allain, O. Bouaziz, and P. Van Houtte, Mater. Sci. Eng. 527, 947 (2010).

    Article  Google Scholar 

  6. M. Jedrychowski, J. Tarasiuk, B. Bacroix, and S. Wronski, J. Appl. Crystallogr. 46, 483 (2013).

    Article  Google Scholar 

  7. M. Kamaya, Mater. Charact. 66, 56 (2012).

    Article  Google Scholar 

  8. H. Kimura, Y. Wang, Y. Akiniwa, and K. Tanaka, Trans. Jpn. Soc. Mech. Eng. Ser. A. 71, 1722 (2005).

    Article  Google Scholar 

  9. C. Schayes, J. Bouquerel, J.-B. Vogt, F. Palleschi, and S. Zaefferer, Mater. Charact. 115, 61 (2016).

    Article  Google Scholar 

  10. S.I. Wright, M.M. Nowell, S.P. Lindeman, P.P. Camus, M. De Graef, and M.A. Jackson, Ultramicroscopy 159, 81 (2015).

    Article  Google Scholar 

  11. S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal. 17, 316 (2011).

    Article  Google Scholar 

  12. M. Kamaya, Ultramicroscopy 111, 1189 (2011).

    Article  Google Scholar 

  13. F. Ram, S. Zaefferer, T. Jäpel, and D. Raabe, J. Appl. Crystallogr. 48, 797 (2015).

    Article  Google Scholar 

  14. S. Wright, M. Nowell, and J. Basinger, Microsc. Microanal. 17, 406 (2011).

    Article  Google Scholar 

  15. J. Jiang, T. Zhang, F.P. Dunne, and T.B. Britton, Proc. R. Soc. A 472, 20150690 (2016).

    Article  Google Scholar 

  16. M. Stoudt, L. Levine, A. Creuziger, and J. Hubbard, Mater. Sci. Eng. 530, 107 (2011).

    Article  Google Scholar 

  17. K. Kunze, S. Wright, B. Adams, and D. Dingley, Texture Stress Microstruct. 20, 41 (1993).

    Article  Google Scholar 

  18. V. Khademi, T. Bieler, and C. Boehlert, Advanced Characterization Techniques for Quantifying and Modeling Deformation at TMS 2016 (Nashville, Tennessee: The Minerals, Metals & Materials Society, 2016).

    Google Scholar 

  19. Y. Mikami, K. Oda, M. Kamaya, and M. Mochizuki, Mater. Sci. Eng. 647, 256 (2015).

    Article  Google Scholar 

  20. T. Zhang, D.M. Collins, F.P. Dunne, and B.A. Shollock, Acta Mater. 80, 25 (2014).

    Article  Google Scholar 

  21. S.I. Wright and M.M. Nowell, Microsc. Microanal. 12, 72 (2006).

    Article  Google Scholar 

  22. D.P. Field, Ultramicroscopy 67, 1 (1997).

    Article  Google Scholar 

  23. N. Krieger Lassen, J. Microsc. 195, 204 (1999).

    Article  Google Scholar 

  24. M. Nowell and S. Wright, J. Microsc. 213, 296 (2004).

    Article  MathSciNet  Google Scholar 

  25. S. Wright, Mater. Sci. Technol. 22, 1287 (2006).

    Article  Google Scholar 

  26. M.F. Ashby, Philos. Mag. 21, 399 (1970).

    Article  Google Scholar 

  27. J. Jiang, T.B. Britton, and A.J. Wilkinson, Philos. Mag. 92, 580 (2012).

    Article  Google Scholar 

  28. D. Prior, J. Microsc. 195, 217 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart I. Wright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, S.I., Suzuki, S. & Nowell, M.M. In Situ EBSD Observations of the Evolution in Crystallographic Orientation with Deformation. JOM 68, 2730–2736 (2016). https://doi.org/10.1007/s11837-016-2084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2084-x

Keywords

Navigation