Skip to main content
Log in

Relating Interface Evolution to Interface Mechanics Based on Interface Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current article focuses on recent work done in understanding the role of processing techniques on interface evolution and connecting interface evolution to interface thickness-dependent properties. Special emphasis is placed on interface evolution during the sintering process of tungsten (W). Sintering with additives such as nickel significantly changes grain boundary properties in W, leading to issues such as grain boundary embrittlement. When one has to mechanically describe properties of polycrystalline W with an account of the influence of grain boundary embrittlement, one must explicitly consider grain boundary properties. This issue is the focus of the present work on the mechanical properties of interfaces. Overall, a phase field modeling-based approach is shown to be an excellent computational tool for predicting the interface evolution. The influences of the interface thickness, chemistry, and orientation of phases around interfaces are analyzed using extended finite element simulations for polycrystalline W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Pal and M. Meraj, Mater. Des. 108, 168 (2016).

    Google Scholar 

  2. H. Yu, X. Zhou, W. Zhang, H. Peng, and C. Zhang, Mater. Des. 44, 320 (2013).

    Article  Google Scholar 

  3. D. Verma, J. Singh, A.H. Varma, and V. Tomar, JOM 67, 1694 (2015).

    Article  Google Scholar 

  4. D. Verma, T. Qu, and V. Tomar, JOM 67, 858 (2015).

    Article  Google Scholar 

  5. T. Qu, D. Verma, M. Shahidi, B. Pichler, C. Hellmich, and V. Tomar, MRS Bull. 40, 349 (2015).

    Article  Google Scholar 

  6. D. Verma and V. Tomar, Mater. Sci. Eng., C 44, 371 (2014).

    Article  Google Scholar 

  7. I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).

    Article  Google Scholar 

  8. T. Qu, D. Verma, M. Alucozai, and V. Tomar, Acta Biomater. 25, 325 (2015).

    Article  Google Scholar 

  9. H. Lee and V. Tomar, Comput. Mater. Sci. 77, 131 (2013).

    Article  Google Scholar 

  10. H. Lee and V. Tomar, Int. J. Plast 53, 135 (2014).

    Article  Google Scholar 

  11. N.A. Mara, N. Li, A. Misra, and J. Wang, JOM 68, 143 (2016).

    Article  Google Scholar 

  12. X. He and Y. Shen, JOM 67, 1486 (2015).

    Article  Google Scholar 

  13. J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara, JOM 64, 1208 (2012).

    Article  Google Scholar 

  14. N.A. Mara, I.J. Beyerlein, J.S. Carpenter, and J. Wang, JOM 64, 1218 (2012).

    Article  Google Scholar 

  15. X. Zhang, E.G. Fu, A. Misra, and M.J. Demkowicz, JOM 62, 75 (2010).

    Article  Google Scholar 

  16. L. Weng, Y. Shen, T. Fan, and J. Xu, JOM 67, 1499 (2015).

    Article  Google Scholar 

  17. R. Srinivasan, R. Banerjee, G.B. Viswanathan, S. Nag, J.Y. Hwang, J. Tiley, and H.L. Fraser, JOM 62, 64 (2010).

    Article  Google Scholar 

  18. J. Wang, C. Zhou, I.J. Beyerlein, and S. Shao, JOM 66, 102 (2014).

    Article  Google Scholar 

  19. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, JOM 64, 1192 (2012).

    Article  Google Scholar 

  20. V.I. Dybkov, JOM 61, 76 (2009).

    Article  Google Scholar 

  21. A. Gupta, S. Lee, R.B. Wagstaff, W. Mark Gallerneault, and J.W. Fenton, JOM 59, 62 (2007).

    Article  Google Scholar 

  22. K.C. Jajam and H.V. Tippur, Eng. Fract. Mech. 78, 1289 (2011).

    Article  Google Scholar 

  23. K.C. Jajam and H.V. Tippur, Int. J. Solids Struct. 49, 1127 (2012).

    Article  Google Scholar 

  24. V.B. Chalivendra and A.J. Rosakis, Eng. Fract. Mech. 75, 2385 (2008).

    Article  Google Scholar 

  25. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).

    Article  Google Scholar 

  26. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).

    Article  Google Scholar 

  27. A. Kunz, S. Pathak, and J.R. Greer, Acta Mater. 59, 4416 (2011).

    Article  Google Scholar 

  28. S.R. Kalidindi and S. Pathak, Acta Mater. 56, 3523 (2008).

    Article  Google Scholar 

  29. S. Pathak, D. Stojakovic, R. Doherty, and S.R. Kalidindi, J. Mater. Res. 24, 1142 (2011).

    Article  Google Scholar 

  30. R. Hahnlen and M.J. Dapino, Compos. B 59, 101 (2014).

    Article  Google Scholar 

  31. B. Radhakrishnan, G.B. Sarma, and T. Zacharia, Acta Mater. 46, 4415 (1998).

    Article  Google Scholar 

  32. S.Y. Hu and C.H. Henager Jr, Acta Mater. 58, 3230 (2010).

    Article  Google Scholar 

  33. U. Grafe, B. Bottger, J. Tiaden, and S.G. Fries, Model. Simul. Mater. Sci. Eng. 8, 871 (2000).

    Article  Google Scholar 

  34. I. Loginova, G. Amberg, and J. Agren, Acta Mater. 49, 573 (2001).

    Article  Google Scholar 

  35. T. Uehara and T. Tsujino, J. Cryst. Growth 275, e219 (2005).

    Article  Google Scholar 

  36. Y.M. Jin, A. Artemev, and A.G. Khachaturyan, Acta Mater. 49, 2309 (2001).

    Article  Google Scholar 

  37. A. Yamanaka, T. Takaki, and Y. Tomita, Mater. Sci. Eng., A 491, 378 (2008).

    Article  Google Scholar 

  38. S.Y. Hu and L.Q. Chen, Acta Mater. 49, 463 (2001).

    Article  Google Scholar 

  39. D. Rodney, Y. Le Bouar, and A. Finel, Acta Mater. 51, 17 (2003).

    Article  Google Scholar 

  40. S.Y. Hu, M.I. Baskes, and M. Stan, Appl. Phys. Lett. 90, 081921 (2007).

    Article  Google Scholar 

  41. Y. Wang and J. Li, Acta Mater. 58, 1212 (2010).

    Article  Google Scholar 

  42. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev. B 61, 14275 (2000).

    Article  Google Scholar 

  43. T. Uehara, T. Tsujino, and N. Ohno, J. Cryst. Growth 300, 530 (2007).

    Article  Google Scholar 

  44. I.S. Aranson, V.A. Kalatsky, and V.M. Vinokur, Phys. Rev. Lett. 85, 118 (2000).

    Article  Google Scholar 

  45. A. Karma, D.A. Kessler, and H. Levine, Phys. Rev. Lett. 87, 045501 (2001).

    Article  Google Scholar 

  46. N. Moelans, B. Blanpain, and P. Wollants, Calphad 32, 268 (2008).

    Article  Google Scholar 

  47. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  Google Scholar 

  48. R.S. Qin and H.K. Bhadeshia, Mater. Sci. Technol. 26, 803 (2010).

    Article  Google Scholar 

  49. Y.U. Wang, Acta Mater. 54, 953 (2006).

    Article  Google Scholar 

  50. J.S. Lee, C. Minkwitz, and Ch. Herzig, Phys. Status Solidi B 202, 931 (1997).

    Article  Google Scholar 

  51. J. Mundy, S. Rothman, N. Lam, H. Hoff, and L. Nowicki, Phys. Rev. B 18, 6566 (1978).

    Article  Google Scholar 

  52. N.L. Peterson, WAAD Technical report (1960).

  53. R.E. Pawel and T. Lundy, Acta Metall. 17, 979 (1969).

    Article  Google Scholar 

  54. N. Arkhipova, S. Klotsman, Y.A. Rabovskij, and A. Timofeev, Fiz. Met. Metalloved. 43, 779 (1977).

    Google Scholar 

  55. G. Neumann and V. Tölle, Philos. Mag. A 61, 563 (1990).

    Article  Google Scholar 

  56. S. Biswas, D. Schwen, J. Singh, and V. Tomar, Extreme Mech. Lett. 7, 78 (2016).

    Article  Google Scholar 

  57. H. Lee and V. Tomar, ASME J. Eng. Mater. Technol. 134, 031010 (2012).

    Article  Google Scholar 

  58. V.K. Gupta, D.-H. Yoon, H.M. Meyer Iii, and J. Luo, Acta Mater. 55, 3131 (2007).

    Article  Google Scholar 

  59. C. Prakash, H. Lee, M. Alucozai, and V. Tomar, Int. J. Fract. 199, 1 (2016).

    Article  Google Scholar 

  60. Abaqus, Version 6.14 Documentation. (Dassault Systemes Simulia Corp, Providence, 2014).

  61. B.R. Lawn and D.B. Marshall, J. Am. Ceram. Soc. 62, 347 (1979).

    Article  Google Scholar 

  62. A.G. Evans and T.R. Wilshaw, Acta Metall. 24, 939 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding received from DoE-NETL supporting this research work (Grant DE-FE0011796). The authors would also like to thank their colleagues Yang Zhang, Debapriya Mohanty, Hao Wang, and Bing Li for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, D., Biswas, S., Prakash, C. et al. Relating Interface Evolution to Interface Mechanics Based on Interface Properties. JOM 69, 30–38 (2017). https://doi.org/10.1007/s11837-016-2160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2160-2

Keywords

Navigation