Skip to main content
Log in

Insights into Cruciform Sample Design

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Four different cruciform sample designs, based on the work of Abu-Farha et al. (JOM 61:48, 2009) were studied. Key features of these designs are a recessed pocket with fillet and re-entrant corners. These samples were shown via digital image correlation to achieve widely differing strain values inside and outside the pocket. From the results of these tests, there are two competing failure mechanisms in the sample. The pocket region is affected by stress concentrations caused by the fillet, and re-entrant notches lead to strain-limited constraints similar to diffuse and localized necks in uniaxial samples. Balancing these two constraints determines the success or premature failure of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Foecke, M.A. Iadicola, A. Lin, and S.W. Banovic, Metall. Mater. Trans. A 38A, 306 (2007).

    Article  Google Scholar 

  2. M.A. Iadicola, T. Foecke, and S.W. Banovic, Int. J. Plast. 24, 2084 (2008).

    Article  Google Scholar 

  3. M.-S. Pham, A.D. Rollett, A. Creuziger, M.A. Creuziger, and T. Foecke, Key Eng. Mater. 611–612, 1771 (2014).

    Article  Google Scholar 

  4. T. Foecke, NIST Center for Automotive Lightweighting. https://www.nist.gov/lightweighting/. Accessed 12 Sept 2016.

  5. M.A. Iadicoa, A. Creuziger, and T. Foecke, Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, vol 8. Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, pp. 277–285.

  6. T. Kuwabara, S. Ikeda, and K. Kuroda, J. Mater. Process. Technol. 80–81, 517 (1998).

    Article  Google Scholar 

  7. G.M. Hommer and A.P. Stebner, Fracture, Fatigue, Failure and Damage Evolution, Vol. 8 (Berlin: Springer, 2016), pp. 45–50.

    Book  Google Scholar 

  8. J.F. Wilson, B.L. Kinsey, and Y.P. Korkolis, J. Manuf. Process. 15, 580 (2013).

    Article  Google Scholar 

  9. D.M. Collins, M. Mostafavi, R.I. Todd, T. Connolley, and A.J. Wilkinson, Acta Mater. 90, 46 (2015).

    Article  Google Scholar 

  10. S. Van Petegem, J. Wagner, T. Panzner, M.V. Upadhyay, T.T.T. Trang, and H. Van Swygenhoven, Acta Mater. 105, 404 (2016).

    Article  Google Scholar 

  11. F. Abu-Farha, L.G. Hector, and M. Khraisheh, JOM 61, 48 (2009).

    Article  Google Scholar 

  12. D. Banerjee, M.A. Iadicola, A. Creuziger, and T. Foecke, TMS 2015 Conference Proceedings (2015).

  13. D. Banerjee, M.A. Iadicola, A. Creuziger, and T. Foecke, Key Eng. Mater. 651–653, 969 (2015).

    Article  Google Scholar 

  14. R.G. Budynas and W.C. Young, Roark’s Formulas for Stress and Strain, 7th edn. (New York: McGraw-Hill, 2002).

    Google Scholar 

  15. R.E. Peterson, Stress Concentration Factors (Hoboken: Wiley, 1974).

    Google Scholar 

  16. H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  17. R. Hill, J. Mech. Phys. Solids 1, 19 (1952).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Creuziger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creuziger, A., Iadicola, M.A., Foecke, T. et al. Insights into Cruciform Sample Design. JOM 69, 902–906 (2017). https://doi.org/10.1007/s11837-017-2261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2261-6

Keywords

Navigation