Skip to main content

Advertisement

Log in

A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Shape-memory materials (SMMs) are characterized by their unique ability to remember and recover their shape in response to external stimuli. Over recent decades, the use of SMMs in biomedical areas such as tissue engineering, drug delivery, endovascular surgery, orthodontics, orthopedics, etc. has attracted significant attention from both academia and industry. Recently, additive manufacturing (AM) has also attracted growing interest for biomedical applications because of its ability to produce on-demand, patient-tailored devices for medical treatments. This article provides a review of current state-of-the-art AM techniques for producing SMMs for biomedical applications. First, both shape-memory alloys and shape-memory polymers are discussed regarding their fundamental characteristics and compositions, and the general principles governing their shape-memory effects. Next, current and potential biomedical applications of SMMs are presented, then available AM techniques that have been used for the fabrication of SMM-based medical devices are discussed and explored. Finally, an outlook on AM of SMMs for biomedical applications is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 19

Fig. 2
Fig. 3

(reprinted with permission from Ref. 1)

Fig. 4
Fig. 5

(reprinted with permission from Ref. 72)

Fig. 6

(reprinted with permission fro Ref. 17)

Fig. 7

(reprinted with permission from Ref. 148)

Fig. 8

(reprinted with permission from Ref. 193)

Fig. 9

(reprinted with permission from Ref. 199)

Fig. 10

(reprinted with permission from Ref. 204)

Fig. 11

(reprinted with permission from Ref. 206)

Fig. 12
Fig. 13

(reprinted with permission from Ref. 149)

Similar content being viewed by others

References

  1. A. Lendlein and S. Kelch, Angew. Chem. Int. Ed. 41, 2034 (2002).

    Google Scholar 

  2. A. Ölander, J. Am. Chem. Soc. 54, 3819 (1932).

    Google Scholar 

  3. W.J. Buehler, J.V. Gilfrich, and R.C. Wiley, J. Appl. Phys. 34, 1475 (1963).

    Google Scholar 

  4. M. Jain, S. Singh, and M. Cadeiras, J. Invasive Cardiol. 25, E180 (2013).

    Google Scholar 

  5. P. Jetty, S. Jayaram, J. Veinot, and M. Pratt, J. Vasc. Surg. 58, 1388 (2013).

    Google Scholar 

  6. J. Cederström and J. Van Humbeeck, Le J. Phys. IV 5, C2-335 (1995).

  7. K. Yamauchi, Shape Memory and Superelastic Alloys Technology Application, ed. K. Yamauchi, I. Ohkata, K. Tsuchiya, and S. Miyazaki (Cambridge: Woodhead, 2011), pp. 43–52.

    Google Scholar 

  8. T. Maruyama and H. Kubo, Shape Memory and Superelastic Alloys Technology Application, ed. K. Yamauchi, I. Ohkata, K. Tsuchiya, and S. Miyazaki (Cambridge: Woodhead, 2011), pp. 141–159.

    Google Scholar 

  9. H. Meng and G. Li, Polymer (Guildf). 54, 2199 (2013).

    Google Scholar 

  10. Q. Zhao, W. Zou, Y. Luo, and T. Xie, Sci. Adv. 2, e1501297 (2016).

    Google Scholar 

  11. A. Lendlein, M. Behl, B. Hiebl, and C. Wischke, Expert Rev. Med. Devices 7, 357 (2010).

    Google Scholar 

  12. M. Imran Khan, M.M. Zagho, and R.A. Shakoor, in Smart Polymer Nanocomposites, ed. D. Ponnamma, K.K. Sadasivuni, J.-J. Cabibihan, and M.A.-A. Al-Maadeed (Springer, Berlin, 2017), pp. 281–301.

  13. C. Liu, H. Qin, and P.T. Mather, J. Mater. Chem. 17, 1543 (2007).

    Google Scholar 

  14. R. Gabbrielli, I.G. Turner, and C.R. Bowen, in Key Engineering Materials (Trans Tech Publ, 2008), pp. 901–906.

  15. N.J. Mankovich, D. Samson, W. Pratt, D. Lew, and J. Beumer, Otolaryngol. Clin. N Am. 27, 875 (1994).

    Google Scholar 

  16. L. Sun and W.M. Huang, Met. Sci. Heat Treat. 51, 573 (2009).

    Google Scholar 

  17. L. Petrini and F. Migliavacca, J. Metall. 2011 (2011).

  18. T.W. Duerig and A.R. Pelton, Mater. Prop. Handb. Titan. Alloys 1035 (1994).

  19. J. Mohd Jani, M. Leary, A. Subic, and M.A. Gibson, Mater. Des. 56, 1078 (2014).

    Google Scholar 

  20. W. Yan, C.H. Wang, X.P. Zhang, and Y.-W. Mai, Smart Mater. Struct. 11, 947 (2002).

    Google Scholar 

  21. M.C. Carroll, C. Somsen, and G. Eggeler, Scr. Mater. 50, 187 (2004).

    Google Scholar 

  22. Y. Zhou, G. Fan, J. Zhang, X. Ding, X. Ren, J. Sun, and K. Otsuka, Mater. Sci. Eng. A 438–440, 602 (2006).

    Google Scholar 

  23. M.F.X. Wagner, S.R. Dey, H. Gugel, J. Frenzel, C. Somsen, and G. Eggeler, Intermetallics 18, 1172 (2010).

    Google Scholar 

  24. J.I. Kim, Y. Liu, and S. Miyazaki, Acta Mater. 52, 487 (2004).

    Google Scholar 

  25. T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, and M. de Wild, Mater. Charact. 94, 189 (2014).

    Google Scholar 

  26. C. Haberland, M. Elahinia, J. Walker, H. Meier, and J. Frenzel, in ASME 2013 Conference Smart Material Adaptive Structures and Intelligent Systems SMASIS 2013 (American Society of Mechanical Engineers Digital Collection, 2013).

  27. W. Huang and W. Toh, J. Mater. Sci. Lett. 19, 1549 (2000).

    Google Scholar 

  28. K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005).

    Google Scholar 

  29. J. Ma, I. Karaman, and R.D. Noebe, Int. Mater. Rev. 55, 257 (2010).

    Google Scholar 

  30. Y. Liu, Y. Liu, and J. Van Humbeeck, Acta Mater. 47, 199 (1998).

    Google Scholar 

  31. M. Dolce and D. Cardone, Int. J. Mech. Sci. 43, 2631 (2001).

    Google Scholar 

  32. T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, and K. Ishida, Science (80–) 333, 68 (2011).

    Google Scholar 

  33. T.W. Duerig, K.N. Melton, D. Stöckel, and C. M. Wayman, editors, in Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London 1990), p. iv.

  34. M. Anthamatten, K. Cavicchi, G. Li, and A. Wang, J. Polym. Sci. Part B Polym. Phys. 54, 1319 (2016).

    Google Scholar 

  35. G. Li and W. Xu, J. Mech. Phys. Solids 59, 1231 (2011).

    MathSciNet  Google Scholar 

  36. R. Abishera, R. Velmurugan, and K.V. Nagendra Gopal, J. Intell. Mater. Syst. Struct. 29, 2164 (2018).

    Google Scholar 

  37. S. Thakur and J. Hu, in Aspects of Polyurethanes, ed. F. Yilmaz (InTechOpen, London, 2017), pp. 53–71.

  38. J.W. Cho, Y.C. Jung, Y.C. Chung, and B.C. Chun, J. Appl. Polym. Sci. 93, 2410 (2004).

    Google Scholar 

  39. M. Ebara, Sci. Technol. Adv. Mater. 16, 14804 (2015).

    Google Scholar 

  40. J.S. Park, Y.C. Chung, S. Do Lee, J.W. Cho, and B.C. Chun, Fibers Polym. 9, 661 (2008).

    Google Scholar 

  41. Y. He, D. Xie, and X. Zhang, J. Mater. Sci. 49, 7339 (2014).

    Google Scholar 

  42. A. Garle, S. Kong, U. Ojha, and B.M. Budhlall, ACS Appl. Mater. Interfaces. 4, 645 (2012).

    Google Scholar 

  43. S.A. Guelcher, Tissue Eng. Part B Rev. 14, 3 (2008).

    Google Scholar 

  44. H.M. Jeong, J.B. Lee, S.Y. Lee, and B.K. Kim, J. Mater. Sci. 35, 279 (2000).

    Google Scholar 

  45. F. Li, L. Qi, J. Yang, M. Xu, X. Luo, and D. Ma, J. Appl. Polym. Sci. 75, 68 (2000).

    Google Scholar 

  46. F. Li, J. Hou, W. Zhu, X. Zhang, M. Xu, X. Luo, D. Ma, and B.K. Kim, J. Appl. Polym. Sci. 62, 631 (1996).

    Google Scholar 

  47. Z. Wang, T. Zhang, H.L. Suo, B. Zhou, Y.L. Cheng, and H.P. Yuan, Gaofenzi Cailiao Kexue Yu Gongcheng/Polym. Mater. Sci. Eng. 25, 1 (2009).

    Google Scholar 

  48. B.S. Lee, B.C. Chun, Y.C. Chung, K. Il Sul, and J.W. Cho, Macromolecules 34, 6431 (2001).

    Google Scholar 

  49. J.R. Lin and L.W. Chen, J. Appl. Polym. Sci. 69, 1563 (1998).

    Google Scholar 

  50. H.M. Jeong, B.K. Ahn, and B.K. Kim, Eur. Polym. J. 37, 2245 (2001).

    Google Scholar 

  51. H.M. Jeong, J.H. Song, S.Y. Lee, and B.K. Kim, J. Mater. Sci. 36, 5457 (2001).

    Google Scholar 

  52. P.T. Mather, C. Liu, and C.J. Campo, U.S. Patent No. 7,208,550 (2007).

  53. S.M. Lai, W.L. Wu, and Y.J. Wang, J. Polym. Res. 23, 99 (2016).

    Google Scholar 

  54. S.H. Ajili, N.G. Ebrahimi, and M. Soleimani, Acta Biomater. 5, 1519 (2009).

    Google Scholar 

  55. M. Behl and A. Lendlein, Kirk‐Othmer Encyclopedia of Chemical Technology (2000), pp. 1–16.

  56. G. Zhu, G. Liang, Q. Xu, and Q. Yu, J. Appl. Polym. Sci. 90, 1589 (2003).

    Google Scholar 

  57. F. Li and R.C. Larock, J. Appl. Polym. Sci. 84, 1533 (2002).

    Google Scholar 

  58. D.D. Andjelkovic, F. Li, and R.C. Larock, ACS Symp. Ser. 921, 67 (2006).

    Google Scholar 

  59. A. Lendlein, A.M. Schmidt, and R. Langer, Proc. Natl. Acad. Sci. U. S. A. 98, 842 (2001).

    Google Scholar 

  60. M. Irie, Shape Mem. Mater. 28, 203 (1998).

    Google Scholar 

  61. M. Elahinia, N.S. Moghaddam, M.T. Andani, A. Amerinatanzi, B.A. Bimber, and R.F. Hamilton, Prog. Mater Sci. 83, 630 (2016).

    Google Scholar 

  62. S. Parvizi, V. Hasannaeimi, E. Saebnoori, T. Shahrabi, and S.K. Sadrnezhaad, Russ. J. Non-Ferr. Met. 53, 169 (2012).

    Google Scholar 

  63. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand, Acta Biomater. 4, 773 (2008).

    Google Scholar 

  64. S. Barbarino, E.L. Saavedra Flores, R.M. Ajaj, I. Dayyani, and M.I. Friswell, Smart Mater. Struct. 23, 63001 (2014).

    Google Scholar 

  65. R. Pfeifer, C.W. Müller, C. Hurschler, S. Kaierle, V. Wesling, and H. Haferkamp, Proc. CIRP 5, 253 (2013).

    Google Scholar 

  66. T. Duerig, A. Pelton, and D. Stöckel, Mater. Sci. Eng. A 273–275, 149 (1999).

    Google Scholar 

  67. S.A. Shabalovskaya, Biomed. Mater. Eng. 6, 267 (1996).

    Google Scholar 

  68. G. Rondelli and B. Vicentini, J. Biomed. Mater. Res. 51, 47 (2000).

    Google Scholar 

  69. A. Concilio and L. Lecce, in Shape Memory Alloy Engineering Aerospace, Structural and Biomedical Application (Elsevier, Oxford, 2014), pp. 1–422.

  70. C. Song, Open Med. Devices J. 2, 24 (2010).

    Google Scholar 

  71. N.B. Morgan, Mater. Sci. Eng. A 378, 16 (2004).

    Google Scholar 

  72. G. Poologasundarampillai and A. Nommeots-Nomm, in 3D Printing in Medicine, ed. D.M. Kalaskar (Elsevier, Amsterdam, 2017), pp. 43–71.

  73. G. Airoldi, G. Riva, and M. Vanelli, J. Phys. IV 05, C8 (1995).

    Google Scholar 

  74. R.C.L. Sachdeva and S. Miyazaki, Engineering Aspects Shape Memory Alloys, ed. T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman (London: Butterworth-Heinemann, 1990), pp. 452–469.

    Google Scholar 

  75. J. Ogilvie, T.D. Drewry, and S. Michael C, Pat. EP 1173102 B1 2, 19 (2001).

  76. Z. Lekston, D. Stroz, and M.J. Drusik-Pawlowska, J. Mater. Eng. Perform. 21, 2650 (2012).

    Google Scholar 

  77. S.J. Savage, Engineering Aspects of Shape Memory Alloys (London: Butterworth-Heinemann, 1991).

    Google Scholar 

  78. A.R. Pelton, D. Stöckel, and T.W. Duerig, Mater. Sci. Forum 327, 63 (2000).

    Google Scholar 

  79. S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramila, and J. Tuukkanen, Biomaterials 23, 2535 (2002).

    Google Scholar 

  80. M. Jackson and W. Ahmed, Surface Engineered Surgical Tools and Medical Devices (2007).

  81. Q.M. Zhao, H.L. Yang, L. Wang, Z.T. Liu, and X.F. Gu, Minim. Invasive Ther. Allied Technol. 25, 171 (2016).

    Google Scholar 

  82. S. Fukuyo, Y. Suzuki, K. Suzuki, and E. Sairenji, Engineering Aspects of Shape Memory Alloys, ed. T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman (London: Butterworth-Heinemann, 1990), pp. 470–476.

    Google Scholar 

  83. S. Idelsohn, J. Pena, D. Lacroix, J.A. Planell, F.J. Gil, and A. Arcas, J. Mater. Sci. Mater. Med. 15, 541 (2004).

    Google Scholar 

  84. D.G. Kim, J.P. Eun, and J.S. Park, J. Korean Neurosurg. Soc. 52, 21 (2012).

    Google Scholar 

  85. Y. Wang, G. Zheng, X. Zhang, Y. Zhang, S. Xiao, and Z. Wang, Eur. Spine J. 20, 118 (2011).

    Google Scholar 

  86. E.E. Kuong, K.M.C. Cheung, D. Samartzis, K.W.K. Yeung, and K.D.K. Luk, Orthop. Proc. 94-B, 102 (2012).

    Google Scholar 

  87. D.J. Wever, J.A. Elstrodt, A.G. Veldhuizen, and J.R.V. Horn, Eur. Spine J. 11, 100 (2002).

    Google Scholar 

  88. H.Z. Morawiec, Z.H. Lekston, K.F. Kobus, M.C. Węgrzyn, and J.T. Drugacz, J. Mater. Eng. Perform. 18, 818 (2009).

    Google Scholar 

  89. S. De Bock, F. Iannaccone, G. De Santis, M. De Beule, P. Mortier, B. Verhegghe, and P. Segers, J. Biomech. 45, 1353 (2012).

    Google Scholar 

  90. A.M. Yahia, V. Gordon, J. Whapham, A. Malek, M. Rehman, and R.D. Fessler, Neurocrit. Care 7, 128 (2007).

    Google Scholar 

  91. T. Yamakawa, T. Yamakawa, S. Aou, S. Ishizuka, M. Suzuki, M. Fujii, and T. Aoki, Adv. Mater. Res. 222, 313 (2011).

    Google Scholar 

  92. S.J. Simske and R. Sachdeva, J. Biomed. Mater. Res. 29, 527 (1995).

    Google Scholar 

  93. A. Schüssler, Laser processing of Nitinol materials, in Proceedings of the International Conference Shape Memory Superelastic Technologies (2001).

  94. K. Kitamura, H. Tobushi, Y. Yoshimi, and Y. Sugimoto, Nihon Kikai Gakkai Ronbunshu, A Hen/Trans. Jpn. Soc. Mech. Eng. Part A 75, 439 (2009).

    Google Scholar 

  95. X. Liu, H.-Y. Luo, S.-P. Liu, and W. De-Feng, in 2011 International Conference Machine Learning and Cybernetics (IEEE, 2011).

  96. A.P. Zbar, Y. Nir, A. Weizman, M. Rabau, and A. Senagore, Tech. Coloproctol. 16, 187 (2012).

    Google Scholar 

  97. Q.H. González-Contreras, M. de Jesús-Mosso, J.A. Bahena-Aponte, O. Aldana-Martínez, K. Pineda-Solís, and S.N. Mejia-Arcadia, Cirugía y Cir. (English Ed.) 84, 482 (2016).

    Google Scholar 

  98. K.C. Chan, M.J. Godman, K. Walsh, N. Wilson, A. Redington, and J.L. Gibbs, Heart 82, 300 (1999).

    Google Scholar 

  99. B.D. Thanopoulos, C.V. Laskari, G.S. Tsaousis, A. Zarayelyan, A. Vekiou, and G.S. Papadopoulos, J. Am. Coll. Cardiol. 31, 1110 (1998).

    Google Scholar 

  100. Y. Wu, M. Wang, and Y. Luo, Int. J. Appl. Electromagn. Mech. (2012), pp. 457–462.

  101. E. Fattorini, T. Brusa, C. Gingert, S.E. Hieber, V. Leung, B. Osmani, M.D. Dominietto, P. Büchler, F. Hetzer, and B. Müller, Ann. Biomed. Eng. 44, 1355 (2016).

    Google Scholar 

  102. M. Simon, R. Kaplow, E. Salzman, and D. Freiman, Radiology 125, 89 (1977).

    Google Scholar 

  103. E. Engmann and M.R. Asch, J. Vasc. Interv. Radiol. 9, 774 (1998).

    Google Scholar 

  104. P.A. Poletti, C.D. Becker, L. Prina, P. Ruijs, H. Bounameaux, D. Didier, P.A. Schneider, and F. Terrier, Eur. Radiol. 8, 289 (1998).

    Google Scholar 

  105. L. Coats and P. Bonhoeffer, Heart 93, 639 (2007).

    Google Scholar 

  106. R. Uflacker and J. Robison, Eur. Radiol. 11, 739 (2001).

    Google Scholar 

  107. J.A. Kaufman, S.C. Geller, D.C. Brewster, C.M. Fan, R.P. Cambria, G.M. Lamuraglia, J.P. Gertler, W.M. Abbott, and A.C. Waltman, Am. J. Roentgenol. 175, 289 (2000).

    Google Scholar 

  108. A. Cuschieri, Surg. Endosc. 5, 179 (1991).

    Google Scholar 

  109. A.J. Carter, D. Scott, J.R. Laird, L. Bailey, J.A. Kovach, T.G. Hoopes, K. Pierce, K. Heath, K. Hess, A. Farb, and R. Virmani, Cathet. Cardiovasc. Diagn. 44, 193 (1998).

    Google Scholar 

  110. S. Tyagi, S. Singh, S. Mukhopadhyay, and U.A. Kaul, Am. Heart J. 146, 920 (2003).

    Google Scholar 

  111. L.G. Machado and M.A. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003).

    Google Scholar 

  112. D.S. Levi, N. Kusnezov, and G.P. Carman, Pediatr. Res. 63, 552 (2008).

    Google Scholar 

  113. S. Cekirge, J.P. Weiss, R.G. Foster, H.L. Neiman, and G.K. McLean, J. Vasc. Interv. Radiol. 4, 805 (1993).

    Google Scholar 

  114. G.W. Knox and H. Reitan, Laryngoscope 115, 1340 (2005).

    Google Scholar 

  115. F. Kasano and T. Morimitsu, Auris Nasus Larynx 24, 137 (1997).

    Google Scholar 

  116. B.A. Vanderbrink, A.R. Rastinehad, and G.H. Badlani, Curr. Opin. Urol. 17, 1 (2007).

    Google Scholar 

  117. F.-L. Chi, S.-J. Wang, and H.-J. Liu, Laryngoscope 117, 248 (2007).

    Google Scholar 

  118. B. Muller, H. Deyhle, S. Mushkolaj, and M. Wieland, Swiss Med. Wkly. 139, 591 (2009).

    Google Scholar 

  119. J.-S. Luo, P.-C. Cui, P.-F. Gao, H. Nan, Z. Liu, and Y.-Z. Sun, Ann. Otol. Rhinol. Laryngol. 120, 198 (2011).

    Google Scholar 

  120. J.L. Olson, R. Shandas, and M. Erlanger, Ann. Biomed. Eng. 40, 1520 (2012).

    Google Scholar 

  121. A.R. Pelton, T.W. Duerig, and D. Stöckel, Minim. Invasive Ther. Allied Technol. 13, 218 (2004).

    Google Scholar 

  122. I.Y. Khmelevskaya, E.P. Ryklina, S.D. Prokoshkin, G.A. Markossian, E.P. Tarutta, and E.N. Iomdina, Mater. Sci. Eng. A 481–482, 651 (2008).

    Google Scholar 

  123. S. Palmer and J. Greenberg, Rev. Obstet. Gynecol. 2, 84 (2009).

    Google Scholar 

  124. D.J. Fernandes, R.V. Peres, A.M. Mendes, and C.N. Elias, ISRN Dent. 2011, 1 (2011).

    Google Scholar 

  125. G.B. Kauffman and I. Mayo, Chem. Educ. 2, 1 (1997).

    Google Scholar 

  126. G.F. Andreasen and T.B. Hilleman, J. Am. Dent. Assoc. 82, 1373 (1971).

    Google Scholar 

  127. S.A. Thompson, Int. Endod. J. 33, 297 (2000).

    Google Scholar 

  128. R. Fazel-Rezai, Biomedical Engineering: From Theory to Applications. BoD–Books on Demand (2011).

  129. S.J. Simske, R.A. Ayers, and T.A. Bateman, Mater. Sci. Forum 250, 151 (1997).

    Google Scholar 

  130. M. Mikulewicz and K. Chojnacka, Biol. Trace Elem. Res. 142, 865 (2011).

    Google Scholar 

  131. N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, C. Haberland, S. Huff, M. Miller, M. Elahinia, and D. Dean, Biomanuf. Rev. 1, 1 (2016).

    Google Scholar 

  132. J. Hu, H. Meng, G. Li, and S.I. Ibekwe, Smart Mater. Struct. 21, 53001 (2012).

    Google Scholar 

  133. K. Seward and P. Krulevitch, Shape Memory Alloy/Shape Memory Polymer Tools. U.S. Patent No. 6,872,433. 29 March 2005 (2001).

  134. A. Espinha, M.C. Serrano, Á. Blanco, and C. López, Adv. Opt. Mater. 2, 516 (2014).

    Google Scholar 

  135. H.U. Jinlian, Shape Memory Polymers and Textiles (Amsterdam: Elsevier, 2007).

    Google Scholar 

  136. B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh, and X.J. Loh, ACS Appl. Mater. Interfaces 8, 10070 (2016).

    Google Scholar 

  137. K. Wang, S. Strandman, and X.X. Zhu, Front. Chem. Sci. Eng. 11, 1 (2017).

    Google Scholar 

  138. W. Small IV, T.S. Wilson, W.J. Benett, J.M. Loge, and D.J. Maitland, Opt. Express 13, 8204 (2005).

    Google Scholar 

  139. G. Li, G. Fei, B. Liu, H. Xia, and Y. Zhao, RSC Adv. 4, 32701 (2014).

    Google Scholar 

  140. G.I. Peterson, A.V. Dobrynin, and M.L. Becker, Adv. Healthc. Mater. 6 (2017).

  141. A. Lendlein and R. Langer, Science (80–) 296, 1673 (2002).

    Google Scholar 

  142. J. Höer, U. Klinge, A. Schachtrupp, C. Töns, and V. Schumpelick, Langenbeck’s Arch. Surg. 386, 218 (2001).

    Google Scholar 

  143. N.C.F. Hodgson, R.A. Malthaner, and T. Ostbye, Ann. Surg. 231, 436 (2000).

    Google Scholar 

  144. D. Zhang, O.J. George, K.M. Petersen, A.C. Jimenez-Vergara, M.S. Hahn, and M.A. Grunlan, Acta Biomater. 10, 4597 (2014).

    Google Scholar 

  145. J.N. Rodriguez, F.J. Clubb, T.S. Wilson, M.W. Miller, T.W. Fossum, J. Hartman, E. Tuzun, P. Singhal, and D.J. Maitland, J. Biomed. Mater. Res. Part A 102, 1231 (2014).

    Google Scholar 

  146. J. Ortega, D. Maitland, T. Wilson, W. Tsai, Ö. Savaş, and D. Saloner, Ann. Biomed. Eng. 35, 1870 (2007).

    Google Scholar 

  147. J.N. Rodriguez, Y.J. Yu, M.W. Miller, T.S. Wilson, J. Hartman, F.J. Clubb, B. Gentry, and D.J. Maitland, Ann. Biomed. Eng. 40, 883 (2012).

    Google Scholar 

  148. Y.C. Jung and J.W. Cho, J. Mater. Sci. Mater. Medic. 21, 2881 (2010).

    Google Scholar 

  149. F.S. Senatov, M.Y. Zadorozhnyy, K.V. Niaza, V.V. Medvedev, S.D. Kaloshkin, N.Y. Anisimova, M.V. Kiselevskiy, K.-C. Yang, Eur Polym J. 93, 222 (2017)

    Google Scholar 

  150. A.C. Weems, J.M. Szafron, A.D. Easley, S. Herting, J. Smolen, and D.J. Maitland, Acta Biomater. 54, 45 (2017).

    Google Scholar 

  151. A.B. Kutikov, K.A. Reyer, and J. Song, Macromol. Chem. Phys. 215, 2482 (2014).

    Google Scholar 

  152. K.J. Cha, E. Lih, J. Choi, Y.K. Joung, D.J. Ahn, and D.K. Han, Macromol. Biosci. 14, 667 (2014).

    Google Scholar 

  153. M. Ebara, M. Akimoto, K. Uto, K. Shiba, G. Yoshikawa, and T. Aoyagi, Polymer (Guildf). 55, 5961 (2014).

    Google Scholar 

  154. M. Ebara, K. Uto, N. Idota, J.M. Hoffman, and T. Aoyagi, Adv. Mater. 24, 273 (2012).

    Google Scholar 

  155. M. Zarek, N. Mansour, S. Shapira, and D. Cohn, Macromol. Rapid Commun. 38, 1600628 (2017).

    Google Scholar 

  156. G.M. Baer, T.S. Wilson, W. Small IV, J. Hartman, W.J. Benett, D.L. Matthews, and D.J. Maitland, J. Biomed. Mater. Res. Part B Appl. Biomater. 90, 421 (2009).

    Google Scholar 

  157. K. Hearon, L.D. Nash, B.L. Volk, T. Ware, J.P. Lewicki, W.E. Voit, T.S. Wilson, and D.J. Maitland, Macromol. Chem. Phys. 214, 1258 (2013).

    Google Scholar 

  158. S.S. Venkatraman, L.P. Tan, J.F.D. Joso, Y.C.F. Boey, and X. Wang, Biomaterials 27, 1573 (2006).

    Google Scholar 

  159. L. Xue, S. Dai, and Z. Li, Biomaterials 31, 8132 (2010).

    Google Scholar 

  160. H. Tamai, K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata, Circulation 102, 399 (2000).

    Google Scholar 

  161. A.T. Neffe, B.D. Hanh, S. Steuer, and A. Lendlein, Adv. Mater. 21, 3394 (2009).

    Google Scholar 

  162. B. Meng, J. Wang, N. Zhu, Q.Y. Meng, F.Z. Cui, and Y.X. Xu, J. Mater. Sci. Mater. Med. 17, 611 (2006).

    Google Scholar 

  163. M. Rom, J. Fabia, C. Slusarczyk, J. Janicki, J. Kasperczyk, and P. Dobrzynski, Polimery/Polymers 59, 562 (2014).

    Google Scholar 

  164. S. Sharifi, T.G. van Kooten, H.J.C. Kranenburg, B.P. Meij, M. Behl, A. Lendlein, and D.W. Grijpma, Biomaterials 34, 8105 (2013).

    Google Scholar 

  165. A.J. Boyle, T.L. Landsman, M.A. Wierzbicki, L.D. Nash, W. Hwang, M.W. Miller, E. Tuzun, S.M. Hasan, and D.J. Maitland, J. Biomed. Mater. Res. Part B Appl. Biomater. 104, 1407 (2016).

    Google Scholar 

  166. L. De Nardo, R. Alberti, A. Cigada, L. Yahia, M.C. Tanzi, and S. Farè, Acta Biomater. 5, 1508 (2009).

    Google Scholar 

  167. J. Horn, W. Hwang, S.L. Jessen, B.K. Keller, M.W. Miller, E. Tuzun, J. Hartman, F.J. Clubb, and D.J. Maitland, J. Biomed. Mater. Res. Part B Appl. Biomater. 105, 1892 (2017).

    Google Scholar 

  168. A.V. Salvekar, W.M. Huang, R. Xiao, Y.S. Wong, S.S. Venkatraman, K.H. Tay, and Z.X. Shen, Acc. Chem. Res. 50, 141 (2017).

    Google Scholar 

  169. S. Tang, C.Y. Zhang, M.N. Huang, Y.F. Luo, and Z.Q. Liang, Contraception 87, 235 (2013).

    Google Scholar 

  170. B. Zhang, J.E. DeBartolo, J. Song, and A.C.S. Appl, Mater. Interfaces 9, 4450 (2017).

    Google Scholar 

  171. C. Chen, J. Hu, H. Huang, Y. Zhu, and T. Qin, Adv. Mater. Technol. 1, 1600015 (2016).

    Google Scholar 

  172. D.J. Maitland, T. Wilson, D.L. Schumann, and G. Baer, Conference Proceedings—Lasers and Electro-Optics Society Annual Meeting, vol. 1, (2002), p. 359.

  173. M. Bao, Q. Zhou, W. Dong, X. Lou, and Y. Zhang, Biomacromolecules 14, 1971 (2013).

    Google Scholar 

  174. J. Han, G. Fei, G. Li, and H. Xia, Macromol. Chem. Phys. 214, 1195 (2013).

    Google Scholar 

  175. A. Lendlein and R. Langer, Science 296, 1673 (2002).

    Google Scholar 

  176. W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, and Z. Mohamed, Powder Technol. 327, 128 (2018).

    Google Scholar 

  177. J. Kietzmann, L. Pitt, and P. Berthon, Bus. Horiz. 58, 209 (2015).

    Google Scholar 

  178. M. Munsch, Laser Additive Manufacturing, ed. M. Brandt (Cambridge: Woodhead, 2017), pp. 399–420.

    Google Scholar 

  179. L.E. Murr, J. Mater. Sci. Technol. 32, 987 (2016).

    Google Scholar 

  180. C.C.L. Wang and Y. Chen, CAD Comput. Aided Des. 69, 63 (2015).

    Google Scholar 

  181. R. Huang, M. Riddle, D. Graziano, J. Warren, S. Das, S. Nimbalkar, J. Cresko, and E. Masanet, J. Clean. Prod. 135, 1559 (2016).

    Google Scholar 

  182. A. Li, A. Challapalli, and G. Li, Sci. Rep. 9, 7621 (2019).

    Google Scholar 

  183. Q. Ge, H.J. Qi, and M.L. Dunn, Appl. Phys. Lett. 103, 131901 (2013).

    Google Scholar 

  184. A.Y. Lee, J. An, and C.K. Chua, Engineering 3, 663 (2017).

    Google Scholar 

  185. X. Kuang, D.J. Roach, J. Wu, C.M. Hamel, Z. Ding, T. Wang, M.L. Dunn, and H.J. Qi, Adv. Funct. Mater. 29, 1805290 (2019).

    Google Scholar 

  186. J. Ma, B. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, R. Arroyave, I. Karaman, and A. Elwany, Sci. Rep. 7, 46707 (2017).

    Google Scholar 

  187. M.H. Elahinia, M. Hashemi, M. Tabesh, and S.B. Bhaduri, Prog. Mater Sci. 57, 911 (2012).

    Google Scholar 

  188. M.T. Andani, N. Shayesteh Moghaddam, C. Haberland, D. Dean, M.J. Miller, and M. Elahinia, Acta Biomater. 10, 4058 (2014).

    Google Scholar 

  189. E.P. Ivanova, K. Bazaka, and R.J. Crawford, New Functional Biomaterials for Medicine and Healthcare (New Delhi: Woodhead, 2014).

    Google Scholar 

  190. Q. Zhou, M.D. Hayat, G. Chen, S. Cai, X. Qu, H. Tang, and P. Cao, Mater. Sci. Eng. A 744, 290 (2019).

    Google Scholar 

  191. S. Dadbakhsh, M. Speirs, J.-P. Kruth, and J. Van Humbeeck, CIRP Ann. 64, 209 (2015).

    Google Scholar 

  192. S. Saedi, S.E. Saghaian, A. Jahadakbar, N. Shayesteh Moghaddam, M. Taheri Andani, S.M. Saghaian, Y.C. Lu, M. Elahinia, and H.E. Karaca, J. Mater. Sci. Mater. Med. 29, 40 (2018).

    Google Scholar 

  193. M. Taheri Andani, S. Saedi, A.S. Turabi, M.R. Karamooz, C. Haberland, H.E. Karaca, and M. Elahinia, J. Mech. Behav. Biomed. Mater. 68, 224 (2017).

    Google Scholar 

  194. M. Speirs, B. Van Hooreweder, J. Van Humbeeck, and J.P. Kruth, J. Mech. Behav. Biomed. Mater. 70, 53 (2017).

    Google Scholar 

  195. A. Bandyopadhyay, B.V. Krishna, W. Xue, and S. Bose, J. Mater. Sci. Mater. Med. 20, 29 (2008).

    Google Scholar 

  196. S. Bernard, V. Krishna Balla, S. Bose, and A. Bandyopadhyay, J. Mech. Behav. Biomed. Mater. 13, 62 (2012).

    Google Scholar 

  197. S. Dadbakhsh, M. Speirs, J.-P. Kruth, and J. Van Humbeeck, CIRP Ann. Manuf. Technol. 64, 209 (2015).

    Google Scholar 

  198. I. Shishkovsky, L.T. Volova, M.V. Kuznetsov, I. Morozov, and I. Parkin, J. Mater. Chem. 18, 1309 (2008).

    Google Scholar 

  199. I.V. Shishkovsky, M.V. Kuznetsov, and Y.G. Morozov, Int. J. Self-Propag. High-Temp. Synth. 19, 157 (2010).

    Google Scholar 

  200. I. Shishkovsky, I. Morozov, S. Fokeev, and L. Volova, Powder Metall. Met. Ceram. 50, 606 (2012).

    Google Scholar 

  201. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Int. J. Mach. Tools Manuf 46, 1459 (2006).

    Google Scholar 

  202. X. Wang, M. Speirs, S. Kustov, B. Vrancken, X. Li, J.-P. Kruth, and J. Van Humbeeck, Scr. Mater. 146, 246 (2018).

    Google Scholar 

  203. L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, and S. Yang, Mater. Des. 162, 394 (2019).

    Google Scholar 

  204. T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer, C. Greulich, T.A. Schildhauer, and M. Köller, Mater. Sci. Eng. C 33, 419 (2013).

    Google Scholar 

  205. S.A. Bernard, V.K. Balla, N.M. Davies, S. Bose, and A. Bandyopadhyay, Acta Biomater. 7, 1902 (2011).

    Google Scholar 

  206. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Metall. Mater. Trans. A 38, 1096 (2007).

    Google Scholar 

  207. J.W. Stansbury and M.J. Idacavage, Dent. Mater. 32, 54 (2016).

    Google Scholar 

  208. F.P.W. Melchels, J. Feijen, and D.W. Grijpma, Biomaterials 31, 6121 (2010).

    Google Scholar 

  209. M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, Adv. Mater. 28, 4166 (2016).

    Google Scholar 

  210. S. Miao, W. Zhu, N.J. Castro, M. Nowicki, X. Zhou, H. Cui, J.P. Fisher, and L.G. Zhang, Sci. Rep. 6, 27226 (2016).

    Google Scholar 

  211. S. Miao, W. Zhu, N.J. Castro, J. Leng, and L.G. Zhang, Tissue Eng. Part C Methods 22, 952 (2016).

    Google Scholar 

  212. A.D. Lantada, A. De Blas Romero, and E.C. Tanarro, Smart Mater. Struct. 25, 65018 (2016).

    Google Scholar 

  213. Y.Y.C. Choong, S. Maleksaeedi, H. Eng, J. Wei, and P.C. Su, Mater. Des. 126, 219 (2017).

    Google Scholar 

  214. F. Ning, W. Cong, J. Wei, S. Wang, and M. Zhang, in ASME 2015 International Manufacturing Science and Engineering Conference MSEC 2015, vol. 1 (2015), p. 369.

  215. F.S. Senatov, K.V. Niaza, M.Y. Zadorozhnyy, A.V. Maksimkin, S.D. Kaloshkin, and Y.Z. Estrin, J. Mech. Behav. Biomed. Mater. 57, 139 (2016).

    Google Scholar 

  216. F.S. Senatov, K.V. Niaza, A.A. Stepashkin, and S.D. Kaloshkin, Compos. Part B Eng. 97, 193 (2016).

    Google Scholar 

  217. S. Miao, N. Castro, M. Nowicki, L. Xia, H. Cui, X. Zhou, W. Zhu, S. Jun Lee, K. Sarkar, G. Vozzi, Y. Tabata, J. Fisher, and L.G. Zhang, Mater. Today 20, 577 (2017).

    Google Scholar 

  218. X. Gu and P.T. Mather, Polymer (Guildf). 53, 5924 (2012).

    Google Scholar 

  219. A.B. Kutikov, A. Gurijala, and J. Song, Tissue Eng. Part C Methods 21, 229 (2015).

    Google Scholar 

  220. S.M. Kurtz and J.N. Devine, Biomaterials 28, 4845 (2007).

    Google Scholar 

  221. S.L. Edwards, J.A. Werkmeister, J.A.M. Ramshaw, K. McLean, and M.L. Jarman-Smith, PEEK Med. Lex. 795 (2010).

  222. J.M. Toth, in PEEK Biomaterials Handbook, ed. S.M. Kurtz (Elsevier, Amsterdam, 2012), pp. 81–92.

  223. A. Wang, R. Lin, C. Stark, and J.H. Dumbleton, Wear 225–229, 724 (1999).

    Google Scholar 

  224. X.L. Wu, W.M. Huang, Z. Ding, H.X. Tan, W.G. Yang, and K.Y. Sun, J. Appl. Polym. Sci. 131, 39844 (2014).

    Google Scholar 

  225. M. Vaezi and S. Yang, Virtual Phys. Prototyp. 10, 123 (2015).

    Google Scholar 

  226. D.J. Wever, A.G. Veldhuizen, M.M. Sanders, J.M. Schakenraad, and J.R. van Horn, Biomaterials 18, 1115 (1997).

    Google Scholar 

  227. M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf, Heart 86, 563 (2001).

    Google Scholar 

Download references

Acknowledgements

X.L. would like to acknowledge financial support from Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) DE190101495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabahi, N., Chen, W., Wang, CH. et al. A Review on Additive Manufacturing of Shape-Memory Materials for Biomedical Applications. JOM 72, 1229–1253 (2020). https://doi.org/10.1007/s11837-020-04013-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04013-x

Navigation