Skip to main content
Log in

Influence of Interface Electric Field on Wettability Between Molten Iron and Submerged Entry Nozzle Interface

  • Interfacial Stability in Multi-component Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The study of submerged entry nozzle clogging dynamics mainly focuses on the interface wetting behavior. So as to understand the effect of the interface electric field on the wetting behavior between the immersion nozzle and the molten steel, electrowetting experiments and field industrial tests were performed. The results show that the wettability between the iron droplet and the nozzle constituent material can be improved by applying an electric field, and the solid–liquid wetting angle decreases with increasing voltage. There is an electric field at the interface between the submerged entry nozzle and molten steel during continuous casting, and the resulting electrowetting effect significantly changes the wetting behavior between the molten steel and the nozzle, which promotes the interaction between the two phases resulting in a large amount of deposits on the inner surface of the submerged entry nozzle, causing nozzle clogging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.J. Trueba, Iron Steel Technol. 124, 3 (2013).

    Google Scholar 

  2. Z.Y. Deng, M.Y. Zhu, Y.L. Zhou, and D. Sichen, Metall. Mater. Trans. B 2015, 47 (2016).

    Google Scholar 

  3. S.H. Liu, X.F. Wang, X.J. Zuo, and Y.F. Wang, Rev. Métall. 73, 105 (2008).

    Google Scholar 

  4. H. Cui, Y.P. Bao, M. Wang, and W.S. Wu, Int. J. Miner. Metall. Mater. 157, 17 (2010).

    Google Scholar 

  5. Y. Vermeulen, B. Coletti, and B. Blanpain, ISIJ Int. 1234, 42 (2002).

    Google Scholar 

  6. J.K.S. Svensson, A. Memarpour, and S. Ekerot, Ironmak. Steelmak. 117, 44 (2017).

    Google Scholar 

  7. L.Y. Zhao and V. Sahajwalla, ISIJ Int. 1, 43 (2003).

    Google Scholar 

  8. Z.Y. Liu, L. Yuan, E.D. Jin, X. Yang, and J.K. Yu, Ceram. Int. 718, 45 (2019).

    Google Scholar 

  9. S. Jansson, V.J. Brabie, and P. Jonsson, Scand. J. Metall. 283, 34 (2005).

    Google Scholar 

  10. E.D. Bilbao, M. Dombrowski, and N. Traon, Adv. Sci. Technol. 264, 92 (2014).

    Google Scholar 

  11. M. Nobuo, A. Mitsuru, and T. Shigeani, Taikabutsu 331, 47 (1995).

    Google Scholar 

  12. Z.F. Tong, F.P. Wang, J.L. Qiao, and L.H. Luo, Nonferrous Met. Sci. Eng. 13, 7 (2016).

    Google Scholar 

  13. G. Christos and H. Michael, Int. J. Appl. Ceram. Technol. 469, 5 (2008).

    Google Scholar 

  14. B.J. Monaghan, S.A. Nightingale, and Q. Dong, Engineering 496, 2 (2010).

    Google Scholar 

  15. R. Boom, S. Riaz, and K.C. Mills, Ironmak. Steelmak. 21, 32 (2005).

    Google Scholar 

  16. S. Riaz and K.C. Mills, Ceram. Forum Int. E47, 79 (2002).

    Google Scholar 

  17. Y. Tsukaguchi, T. Kato, and S. Watanabe, Bull. Jpn. Inst. Met. 27, 50 (2011).

    Google Scholar 

  18. H.H. Wang, Y.J. Xu, K. Jiang, L. Ge, T.P. Qu, and D.Y. Wang, Mater. Rep. 96, 31 (2017).

    Google Scholar 

  19. X. Yang, J.K. Yu, Z.Y. Liu, X.H. Hou, and B.Y. Ma, Ceram. Int. 2881, 43 (2017).

    Google Scholar 

  20. X. Yang, Z.Y. Liu, and J.K. Yu, J. Mater. Proc. Technol. 341, 259 (2018).

    Google Scholar 

  21. J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir, Acta Mater. 4487, 51 (2003).

    Google Scholar 

  22. X.F. Zhang, J.D. Guo, and J.K. Shang, Scr. Mater. 513, 57 (2007).

    Google Scholar 

  23. X.F. Zhang, J.D. Guo, and J.K. Shang, J. Electr. Mater. 425, 38 (2009).

    Google Scholar 

  24. L.M. Zhang, N. Li, and H. Xing, Adv. Condens. Matter Phys. 1, 2018 (2018).

    Google Scholar 

  25. A. Memarpour, V. Brabie, and P. Jönsson, Ironmak. Steelmak. 229, 239 (2013).

    Google Scholar 

  26. F. Tehovni, J. Burja, B. Arh, and M. Knap, Metalurgija 371, 54 (2015).

    Google Scholar 

  27. K. Sasai and Y. Mizukami, ISIJ Int. 802, 34 (1994).

    Google Scholar 

  28. J.K. Yu, X. Yang, Z.Y. Liu, X.H. Hou, and Z.K. Yin, Ceram. Int. 13025, 43 (2017).

    Google Scholar 

  29. J.H. Kim, J.M. Lee, H.C. Shin, and Y.H. Paik, Metal. Mater. Int. 593, 9 (2003).

    Google Scholar 

  30. K. Mukai and M. Zeze, Steel Res. Int. 131, 74 (2003).

    Google Scholar 

Download references

Acknowledgements

The project was funded by the National Natural Science Foundation of China (51874171, 51601035 and 51974154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingkun Yu or Zhijun He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, Y., Yuan, L. et al. Influence of Interface Electric Field on Wettability Between Molten Iron and Submerged Entry Nozzle Interface. JOM 72, 3521–3528 (2020). https://doi.org/10.1007/s11837-020-04240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04240-2

Navigation