Skip to main content
Log in

Toward Multiscale Model Development for Multiphase Flow: Direct Numerical Simulation of Dispersed Phases and Multiscale Interfaces in a Gas-Stirred Ladle

  • Computational Modeling in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Insights into dispersed phases, such as bubbles and droplets, and multiscale interfaces in a gas-stirred ladle are of great significance to multiphase systems of metallurgical reactors, but are still challenging and not fully understood. A direct numerical simulation of dispersing phases was developed, coupling a sub-grid-scale large-eddy simulation for turbulence in fine grids with local refinement tactics. After validation with experimental data, the model was applied to investigate the bubble formation process at small length scales to understand the mechanism of bubble breakup and coalescence, to reveal the interaction of bubbles with surrounding fluid and the evolution of heterogeneous vortexes structures, to compare transient phenomena and time-averaged behavior, and to resolve the large-scale interface profile and the large number of small droplets formed by the interaction of metal, slag, and gas. The availability of results from the bubble/droplet scale using the current simulations should help advance new closure relations for the average or large-scale flows toward a multiscale model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld and Y. Tsuji, Multiphase Flows with Droplets and Particles (CRC Press, Boca Raton, 2012), pp 4–20.

    Google Scholar 

  2. M.A. Rhamdhani, K.S. Coley and G.A. Brooks, Metall. Mater. Trans. B 36, 591. (2005).

    Article  Google Scholar 

  3. M.A. Rhamdhani, G.A. Brooks and K.S. Coley, Metall. Mater. Trans. B 37, 1087. (2006).

    Article  Google Scholar 

  4. D. Mazumdar and J.W. Evans, Modelling of Steelmaking Process (CRC Press, Boca Raton, 2009), pp 12–60.

    Book  Google Scholar 

  5. N. Dogan, G. Brooks and M.A. Rhamdhani, ISIJ Inter. 49, 24. (2009).

    Article  Google Scholar 

  6. M.A. Rhamdhani, K.S. Coley and G.A. Brooks, Metall. Mater. Trans. B 36, 219. (2005).

    Article  Google Scholar 

  7. J.E. Olsen and Q.G. Reynolds, Metall. Mater. Trans. B 51, 1750. (2020).

    Article  Google Scholar 

  8. M.M Li, Q, Li, S.B. Kuang and Z.S Zou, Ind. Eng. Chem. Res. 55, 3630 (2016).

  9. Q. Li, M.M. Li, S.B. Kuang and Z.S. Zou, Metall. Mater. Trans. B 46, 1494. (2015).

    Article  Google Scholar 

  10. Q. Li, M.M. Li, S.B. Kuang and Z.S. Zou, JOM 68, 3126. (2018).

    Article  Google Scholar 

  11. M.M. Li, Q. Li, Z.S. Zou and B.K. Li, JOM 71, 729. (2019).

    Article  Google Scholar 

  12. G. Venturini and M. Goldschmit, Metall. Mater. Trans. B 38, 461. (2007).

    Article  Google Scholar 

  13. B.K. Li, H.B. Yin, C.Q. Zhou and F. Tsukihashi, ISIJ Int. 48, 1704. (2008).

    Article  Google Scholar 

  14. F.P. Maldonado, M.A. Ramirez, A. Conejo and C. Gonzalez, ISIJ Int. 51, 1110. (2011).

    Article  Google Scholar 

  15. W.T. Lou and M. Zhu, Metall. Mater. Trans. B 44, 1251. (2013).

    Article  Google Scholar 

  16. W.T. Lou and M. Zhu, Metall. Mater. Trans. B 54, 9. (2014).

    Google Scholar 

  17. V. De Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy and J.P. Bellot, ISIJ Int. 52, 1273. (2012).

    Article  Google Scholar 

  18. J.P. Bellot, V. De Felice, B. Dussoubs, A. Jardy and S. Hans, Metall. Mater. Trans. B 45, 13. (2014).

    Article  Google Scholar 

  19. L. Jonsson and P. Jönsson, ISIJ Int. 36, 1127. (1996).

    Article  Google Scholar 

  20. L.M. Li, Z.Q. Liu, B.K. Li, H. Matsuura and F. Tsukihashi, ISIJ Int. 55, 1337. (2015).

    Article  Google Scholar 

  21. L. Jonsson, D. Sichen and P. Jönsson, ISIJ Int. 38, 260. (1998).

    Article  Google Scholar 

  22. Y. Sheng and G.A. Irons, Metall. Mater. Trans. B 24, 695. (1993).

    Article  Google Scholar 

  23. D. Mazumdar and R.I.L. Guthrie, ISIJ Int. 34, 384. (1994).

    Article  Google Scholar 

  24. H.P. Liu, Z.Y. Qi and M.G. Xu, Steel Res. Int. 82, 440. (2011).

    Article  Google Scholar 

  25. Q. Cao and L. Nastac, Metall. Mater. Trans. B 49, 1388. (2018).

    Article  Google Scholar 

  26. R. Singh, D. Mazumdar and A.K. Ray, ISIJ Int. 48, 1033. (2008).

    Article  Google Scholar 

  27. L.M. Li, Z.Q. Liu, M.X. Cao and B.K. Li, JOM 67, 1459. (2015).

    Article  Google Scholar 

  28. L.M. Li, B.K. Li and Z.Q. Liu, ISIJ Int. 57, 1. (2017).

    Article  Google Scholar 

  29. Q. Li and P.C. Pistorius, Metall. Mater. Trans. B. https://doi.org/10.1007/s11663-021-02121-w (2021).

    Article  Google Scholar 

  30. L.F. Zhang and S. Taniguchi, Int. Mater. Rev. 45, 59. (2000).

    Article  Google Scholar 

  31. Q. Cao and L. Nastac, Ironmaking Steelmaking 45, 984. (2018).

    Article  Google Scholar 

  32. Q. Cao, A. Pitts and L. Nastac, Ironmaking Steelmaking 45, 280. (2018).

    Article  Google Scholar 

  33. S. Cloete, J.E. Olsen and P. Skjetne, Appl. Ocean Res. 31, 220. (2009).

    Article  Google Scholar 

  34. S. Cloete, J.J. Eksteen and S.M. Bradshaw, Mineral Eng. 46, 16. (2013).

    Article  Google Scholar 

  35. Y. Liu, M. Ersson, H.P. Liu, P. Jonsson and Y. Gan, Steel Res. Int. 90, 1. (2019).

    Google Scholar 

  36. V.T. Mantripragada and S. Sarkar, Canadian Metal. Quart. 59, 159. (2020).

    Article  Google Scholar 

  37. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila and T. Fabritius, Steel Res. Int. 90, 1800365. (2019).

    Article  Google Scholar 

  38. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, T. Palovaara, A.K. Kumar Gupta and T. Fabritius, Steel Res. Int., 90, 1900088 (2019).

  39. B.H. Zhu, B. Zhang and K. Chattopadhyay, Metall. Trans. B 51, 898. (2020).

    Article  Google Scholar 

  40. Y. Liu, M. Ersson, H. Liu, P.G. Jonsson and Y. Gan, Metall. Trans. B 50, 555. (2019).

    Article  Google Scholar 

  41. R.D. Morales, F.A. Calderón-Hurtado and K. Chattopadhyay, Metall. Trans. B 51, 628. (2020).

    Article  Google Scholar 

  42. R.D. Morales, F.A. Calderón-Hurtado and K. Chattopadhyay, ISIJ Inter. 59, 1224. (2019).

    Article  Google Scholar 

  43. C.W. Hirt and B.D. Nichols, J. Comp. Phys. 39, 201. (1981).

    Article  Google Scholar 

  44. J.U. Brackbill, D.B. Kothe and C. Zemach, J. Comp. Phys. 100, 335. (1992).

    Article  Google Scholar 

  45. O. Ubbink and R.I. Isssa, J. Comp. Phys. 153, 26. (1999).

    Article  Google Scholar 

  46. Rusche, H. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. (Ph.D. Thesis, Imperial College London, London, UK, 2002), pp. 115-120.

  47. J. Smagorinsky, Month. Weather Rev. 91, 99. (1963).

    Article  Google Scholar 

  48. M. Germano, U. Piomelli, P. Moin and W.H. Cabot, Phys. Fluids 3, 1760. (1991).

    Article  Google Scholar 

  49. B. Niceno, M.T. Dhotre and N.G. Deen, Chem. Eng. Journal 63, 3923. (2008).

    Article  Google Scholar 

  50. G. Agbaglah, S. Delaux, D. Fuster, J. Hoepffner, C. Josserand, S. Popinet, P. Raya, R. Scardovelli and S. Zaleski, C.R. Mec. 339, 194. (2011).

    Article  Google Scholar 

  51. N. Ahmad, M.N. Farooqi and D. Unat, Sci. Program. 2018, 1. (2018).

    Google Scholar 

  52. P.E. Anagbo, J.K. Brimacombe and A.H. Castillejos, Canadian Metal. Quart. 28, 323. (1989).

    Article  Google Scholar 

  53. D. Laupsien, A. Cockx and A. Line, Chem. Eng. Tech. 40, 1484. (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Qiang Li acknowledges the financial support from the National Natural Science Foundation of China under Grant No. 52074079, the Fundamental Research Funds of the Central Universities of China under Grant No. N2125018, and the China Scholarship Council (No. 201706085028) as a visiting scholar in Carnegie Mellon University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Conflict of interest

Additionally, on behalf of all authors, the corresponding author states no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Pistorius, P.C. Toward Multiscale Model Development for Multiphase Flow: Direct Numerical Simulation of Dispersed Phases and Multiscale Interfaces in a Gas-Stirred Ladle. JOM 73, 2888–2899 (2021). https://doi.org/10.1007/s11837-021-04806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04806-8

Navigation