Skip to main content
Log in

Investigating the Grain Refinement Mechanisms of Pulsed Electric Current, Ultrasonic and Melt Stirring Solidification of Pure Aluminium

  • Advanced Casting and Melt Processing Technology for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A comparison study between an electric current applied in the pulsed mode (ECP), ultrasonic treatment (UST), and melt stirring treatment (MST) was performed to understand the origin of equiaxed grains during the solidification of pure Al. ECP and UST were applied at 760°C and 700°C before the onset of nucleation, and at one temperature range after the onset of nucleation at 661°C. UST produces excellent refinement in all three temperature ranges compared to ECP. Interestingly, application of the MST process at 661°C over the surface of the solidifying melt also resulted in significant refinement comparable to that of UST (grain size of ~260–460 μm).ECP, UST, and MST techniques differ in terms of the dominant mechanism influencing the grain refinement. Therefore, the present work analyses and discusses the grain refinement mechanisms based on nucleation, fragmentation, and a crystal separation mechanism for the origin of fine grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. R.G. Guan, and D. Tie, Acta Metall. Sin.-Engl. 305, 409. (2017).

    Google Scholar 

  2. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn, Curr. Opin. Solid State Mater. Sci. 201, 13. (2016).

    Article  Google Scholar 

  3. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Metall. Mater. Trans. A 36–7, 1669. (2005).

    Article  Google Scholar 

  4. G. Wang, M. Dargusch, M. Easton, and D. StJohn, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy, (Cambridge: Woodhead, 2018), pp. 279.

  5. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 4811, 2823. (2000).

    Article  Google Scholar 

  6. Z. Fan, Int. Mater. Rev. 472, 49. (2002).

    Article  Google Scholar 

  7. M.C. Flemings, Metall. Trans. A 225, 957. (1991).

    Article  Google Scholar 

  8. A.K. Misra, Metall. Trans. A 172, 358. (1986).

    Article  Google Scholar 

  9. K.I. Vashchenko, D.F. Chernega, S.L. Vorobev, N.I. Lysenko, and Y.E. Yakovchuk, Met. Sci. Heat Treat. 163, 261. (1974).

    Article  Google Scholar 

  10. A. Radjai, and K. Miwa, Metall. Mater. Trans. A 313, 755. (2000).

    Article  Google Scholar 

  11. C. Vives, Metall. Trans. B 205, 623. (1989).

    Article  Google Scholar 

  12. V. Abramov, O. Abramov, V. Bulgakov, and F. Sommer, Mater. Lett. 371–2, 27. (1998).

    Article  Google Scholar 

  13. G.I. Eskin, Ultrason. Sonochem. 22, S137. (1995).

    Article  Google Scholar 

  14. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 5912, 4907. (2011).

    Article  Google Scholar 

  15. Y.W. Jia, H.J. Huang, Y.A. Fu, G.L. Zhu, D. Shu, B.D. Sun, and D.H. StJohn, Scr. Mater. 167, 6. (2019).

    Article  Google Scholar 

  16. A. Hellawell, S. Liu, and S.Z. Lu, JOM 493, 18. (1997).

    Article  Google Scholar 

  17. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward, Trans. Metall. Soc. AIME 2362, 149. (1966).

    Google Scholar 

  18. Z. Fan, Y. Wang, Z.F. Zhang, M. Xia, H.T. Li, J. Xu, L. Granasy, and G.M. Scamans, Int. J. Cast. Metal. Res. 221–4, 318. (2009).

    Article  Google Scholar 

  19. G. Scamans, H.-T. Li, J.L. Nebreda, J. Patel, I. Stone, Y. Wang, X. Yang, and Z. Fan, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy, (Cambridge: Woodhead, 2018), pp. 249.

  20. D.G. Eskin, I. Tzanakis, F. Wang, G.S.B. Lebon, T. Subroto, K. Pericleous, and J. Mi, Ultrason. Sonochem. 52, 455. (2019).

    Article  Google Scholar 

  21. T. Li, X. Lin, and W.D. Huang, Acta Mater. 5418, 4815. (2006).

    Article  Google Scholar 

  22. J.A. Dantzig, and M. Rappaz, Solidification (CRC, Boca Raton, 2009), p 287.

    Book  MATH  Google Scholar 

  23. A. Ohno (ed.), Solidification: The Separation Theory and its Practical Applications (Springer, Berlin, 1987)., p 42.

    Book  Google Scholar 

  24. J. Hutt, and D. StJohn, Int. J. Cast. Metal. Res. 111, 13. (1998).

    Article  Google Scholar 

  25. N. Balasubramani, G. Wang, D.H. StJohn, and M.S. Dargusch, Metall. Mater, Trans, A 526, 2676. (2021).

    Article  Google Scholar 

  26. N. Balasubramani, G. Wang, D.H. StJohn, and M.S. Dargusch, J. Mater. Sci. Technol. 65, 38. (2021).

    Article  Google Scholar 

  27. J. Campbell, Int. Mater. Rev. 261, 71. (1981).

    Article  Google Scholar 

  28. N. Li, L.M. Zhang, R. Zhang, P.F. Yin, H. Xing, and H.J. Wu, Metals-Basel, 95 (2019).

  29. Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, J. Sun, G. Wang, X.C. Miao, C.J. Song, and Q.J. Zhai, Sci. Rep-UK 81, 3242. (2018).

    Article  Google Scholar 

  30. L.M. Zhang, H.N. Liu, N. Li, J. Wang, R. Zhang, H. Xing, and K.K. Song, J. Mater. Res. 313, 396. (2016).

    Article  Google Scholar 

  31. D. Rabiger, Y.H. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert, Acta Mater. 79, 327. (2014).

    Article  Google Scholar 

  32. M. Nakada, Y. Shiohara, and M.C. Flemings, ISIJ Int. 301, 27. (1990).

    Article  Google Scholar 

  33. X. Liao, Q. Zhai, J. Luo, W. Chen, and Y. Gong, Acta Mater. 559, 3103. (2007).

    Article  Google Scholar 

  34. Z. Xu, X. Wang, D. Liang, H. Zhong, N. Pei, Y. Gong, and Q. Zhai, Mater. Sci. Tech-Lond. 311a, 1595. (2015).

    Article  Google Scholar 

  35. J. Li, J. Ma, Y. Gao, and Q. Zhai, Mater. Sci. Eng. A 49012, 452. (2008).

    Article  Google Scholar 

  36. Y. Zhang, X. Cheng, H. Zhong, Z. Xu, L. Li, Y. Gong, X. Miao, C. Song, and Q. Zhai, Metals-Basel, 67 (2016).

  37. Y.H. Zhang, D. Rabiger, and S. Eckert, J. Mater. Sci. 514, 2153. (2016).

    Article  Google Scholar 

  38. N. Balasubramani, G. Wang, M.A. Easton, D.H. StJohn, M.S. Dargusch, and J. Magnes, Alloy 93, 829. (2021).

    Google Scholar 

  39. G. Wang, P. Croaker, M. Dargusch, D. McGuckin, and D. StJohn, Comp. Mater. Sci. 134, 116. (2017).

    Article  Google Scholar 

  40. N. Balasubramani, D. StJohn, M. Dargusch, and G. Wang, Materials (Basel), 1219 (2019).

  41. G. Wang, Q. Wang, M.A. Easton, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn, Sci. Rep. 71, 9729. (2017).

    Article  Google Scholar 

  42. B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch, J. Cryst. Growth 512, 20. (2019).

    Article  Google Scholar 

  43. G. Wang, M.S. Dargusch, D.G. Eskin, and D.H. StJohn, Adv. Eng. Mater. 198, 1700264. (2017).

    Article  Google Scholar 

  44. G. Wang, E. Qiang Wang, A. Prasad, M. Dargusch, and D.H. StJohn, Shape Casting: 6th International Symposium (Wiley, New York, 2016), p 141.

    Book  Google Scholar 

  45. T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman, Metall. Mater. Trans. A 41a8, 2056. (2010).

    Article  Google Scholar 

  46. F. Wang, I. Tzanakis, D. Eskin, J. Mi, and T. Connolley, Ultrason. Sonochem. 39, 66. (2017).

    Article  Google Scholar 

  47. B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, and J. Mi, Acta Mater. 144, 505. (2018).

    Article  Google Scholar 

  48. D.Y. Tan, T.L. Lee, J.C. Khong, T. Connolley, K. Fezzaa, and J.W. Mi, Metall. Mater. Trans. A 467, 2851. (2015).

    Article  Google Scholar 

  49. S. Wang, J. Kang, Z. Guo, T.L. Lee, X. Zhang, Q. Wang, C. Deng, and J. Mi, Acta Mater. 165, 388. (2019).

    Article  Google Scholar 

  50. S. Wang, J. Kang, X. Zhang, and Z. Guo, Ultrasonics 83, 26. (2018).

    Article  Google Scholar 

  51. C. Wang, T. Connolley, I. Tzanakis, D. Eskin, and J. Mi, Materials (Basel), 131 (2019).

  52. T. Motegi, and A. Ohno, J. Jpn. I. Met. 444, 359. (1980).

    Article  Google Scholar 

  53. Z.L. Zhao, J.L. Wang, and L. Liu, Mater. Manuf. Process 262, 249. (2011).

    Article  Google Scholar 

  54. J. Ma, J. Li, Y. Gao, and Q. Zhai, Mater. Lett. 631, 142. (2009).

    Article  Google Scholar 

  55. J.C. Jie, S.P. Yue, J. Liu, D.H. StJohn, Y.B. Zhang, E.Y. Guo, T.M. Wang, and T.J. Li, Acta Mater. 116747 (2021).

  56. Z.-X. Yin, Y.-Y. Gong, B. Li, Y.-F. Cheng, D. Liang, and Q.-J. Zhai, J. Mater. Process Technol. 21212, 2629. (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support provided by Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices IH150100024, the ARC Discovery grant DP140100702 and ARC linkage project LP150100950, the National Natural Science Foundation of China grant U1760204 and 51974183. The first author thanks the technical support for conducting experiments at the CAST facility, Shanghai University. Tharmalingam Sivarupan and Nan Yang’s assistance during casting experiments at The University of Queensland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagasivamuni Balasubramani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramani, N., Xu, Y., Zhang, Y. et al. Investigating the Grain Refinement Mechanisms of Pulsed Electric Current, Ultrasonic and Melt Stirring Solidification of Pure Aluminium. JOM 73, 3873–3882 (2021). https://doi.org/10.1007/s11837-021-04904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04904-7

Navigation