Skip to main content
Log in

In Situ Characterization of Deformation Twinning in Magnesium During Cyclic Loading via Electron Backscatter Diffraction

  • In-situ Methods for Understanding Deformation & MS Evolution in Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An approach for identifying deformation twinning and twin variants from electron backscatter diffraction (EBSD) data collected at multiple load steps during in situ cyclic loading of a Mg-4Al alloy is introduced. After initial clean up by OIM AnalysisTM software, the EBSD maps of different load steps were spatially transformed and aligned, compared, and modified to have a consistent grain definition throughout all load steps. For each grain, the parent orientation at different load steps was determined with the EBSD data at the undeformed load step as reference, and the twins were identified by comparing the child grain orientation with each possible twin variant orientation of the parent grain. Special attention was paid to the calculation of crystallographically equivalent orientations and grain average orientation, which is essential for making the twin variant identification consistent throughout all load steps. The twin identification methodology was used to visualize the twin evolution history during cyclic loading, including investigation of the behavior of persistent twins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The experimental data supporting this publication are available on the Materials Commons at http://doi.org/10.13011/m3-me1a-6q83.

Code Availability

PRISMS-TwinID, is a MATLAB code for characterizing twins and twin variants from in-situ EBSD data. It can be downloaded at Github https://github.com/prisms-center/prisms-toolbox/tree/master/PRISMS-TwinID.

References

  1. B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  2. A.A. Luo, Int. Mater. Rev. 49, 13 (2004).

    Article  Google Scholar 

  3. B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Scr. Mater. 84–85, 1 (2014).

    Article  Google Scholar 

  4. D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, and L. Qin, Biomaterials 112, 287 (2017).

    Article  Google Scholar 

  5. W.J. Joost and P.E. Krajewski, Scr. Mater. 128, 107 (2017).

    Article  Google Scholar 

  6. S. You, Y. Huang, K.U. Kainer, and N. Hort, J. Magnes. Alloy. 5, 239 (2017).

    Article  Google Scholar 

  7. S. Kleiner and P.J. Uggowitzer, Mater. Sci. Eng. A 379, 258 (2004).

    Article  Google Scholar 

  8. C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado, Acta Mater. 60, 1889 (2012).

    Article  Google Scholar 

  9. C.J. Boehlert, Z. Chen, A. Chakkedath, I. Gutiérrez-Urrutia, J. Llorca, J. Bohlen, S. Yi, D. Letzig, and M.T. Pérez-Prado, Philos. Mag. 93, 598 (2013).

    Article  Google Scholar 

  10. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  11. M.R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).

    Article  Google Scholar 

  12. M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  13. S.R. Agnew, R.P. Mulay, F.J. Polesak, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen, Acta Mater. 61, 3769 (2013).

    Article  Google Scholar 

  14. I.J. Beyerlein, X. Zhang, and A. Misra, Annu. Rev. Mater. Res. 44, 329 (2014).

    Article  Google Scholar 

  15. T.B. Britton, F.P.E. Dunne, and A.J. Wilkinson, On the Mechanistic Basis of Deformation at the Microscale in Hexagonal Close-Packed Metals (2015).

  16. Y. Chino, K. Kimura, M. Hakamada, and M. Mabuchi, Mater. Sci. Eng. A 485, 311 (2008).

    Article  Google Scholar 

  17. A. Ghaderi and M.R. Barnett, Acta Mater. 59, 7824 (2011).

    Article  Google Scholar 

  18. A.D. Murphy-Leonard, D.C. Pagan, A. Beaudoin, M.P. Miller, and J.E. Allison, Int. J. Fatigue 125, 314 (2019).

    Article  Google Scholar 

  19. B.M. Morrow, R.J. McCabe, E.K. Cerreta, and C.N. Tomé, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 36 (2014).

  20. J. Jeong, M. Alfreider, R. Konetschnik, D. Kiener, and S.H. Oh, Acta Mater. 158, 407 (2018).

    Article  Google Scholar 

  21. B.Y. Liu, K.E. Prasad, N. Yang, F. Liu, and Z.W. Shan, Acta Mater. 179, 414 (2019).

    Article  Google Scholar 

  22. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel, Scr. Mater. 48, 1003 (2003).

    Article  Google Scholar 

  23. S.R. Agnew, D.W. Brown, and C.N. Tomé, Acta Mater. 54, 4841 (2006).

    Article  Google Scholar 

  24. C.C. Aydiner, J.V. Bernier, B. Clausen, U. Lienert, C.N. Tomé, and D.W. Brown, Phys. Rev. B - Condens. Matter Mater. Phys. 80, 024113 (2009).

  25. H. Abdolvand, M. Majkut, J. Oddershede, S. Schmidt, U. Lienert, B.J. Diak, P.J. Withers, and M.R. Daymond, Int. J. Plast. 70, 77 (2015).

    Article  Google Scholar 

  26. H. Yang, S. Yin, C. Huang, Z. Zhang, S. Wu, S. Li, and Y. Liu, Adv. Eng. Mater. 10, 955 (2008).

    Article  Google Scholar 

  27. F. Liu, C. Guo, R. Xin, G. Wu, and Q. Liu, J. Magnes. Alloy. 7, 258 (2019).

    Article  Google Scholar 

  28. Z. Chen and S. Daly, Mater. Charact. 169, 110628 (2020).

    Article  Google Scholar 

  29. S.I. Wright, and R.J. Larsen, J. Microsc. 205, 245 (2002).

    Article  MathSciNet  Google Scholar 

  30. B.L. Henrie, T.A. Mason, and B.L. Hansen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A, 3745 (2004).

  31. B.L. Henrie, T.A. Mason, and J.F. Bingert, Mater. Sci. Forum 495–497, 191 (2005).

    Article  Google Scholar 

  32. P.E. Marshall, G. Proust, J.T. Rogers, and R.J. McCabe, J. Microsc. 238, 218 (2010).

    Article  MathSciNet  Google Scholar 

  33. M. Yaghoobi, Z. Chen, V. Sundararaghavan, S. Daly, and J.E. Allison, Integr. Mater. Manuf. Innov. 10, 488 (2021).

    Article  Google Scholar 

  34. M.A. Charpagne, F. Strub, and T.M. Pollock, Mater. Charact. 150, 184 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0008637 as part of the Center for PRedictive Integrated Structural Materials Science (PRISMS) at the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Torbet, C. & Allison, J. In Situ Characterization of Deformation Twinning in Magnesium During Cyclic Loading via Electron Backscatter Diffraction. JOM 74, 2577–2591 (2022). https://doi.org/10.1007/s11837-022-05335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05335-8

Navigation