Skip to main content
Log in

Grain boundary misorientation effects on creep and cracking in Ni-based alloys

  • Research Summary
  • Grain Boundaries
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of altered grain boundary character distributions on the creep and cracking behavior of polycrystalline Ni-16Cr-9Fe at 360°C was studied by comparing the creep and intergranular cracking behavior of solution-annealed material containing mostly high-angle boundaries to material that was thermomechanically processed to enhance the proportion of coincident-site lattice boundaries. In parallel with mechanical testing, the modification of dislocation structures in the grain boundary resulting from reactions with run-in lattice dislocations was studied using transmission electron microscopy. Observations were concerned with the ability of grain boundaries to act as sinks for lattice dislocations in which the kinetics depend on the grain-boundary structure. A mechanism based on dislocation annihilation was proposed to account for the observed effect of the coincident-site lattice boundaries on creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Sutton, Int. Met. Rev., 29 (1984), pp. 377–402.

    CAS  Google Scholar 

  2. L.S. Shvindlerman and B.B. Straumal, Acta Metall., 33 (1985), pp. 1735–1749.

    Article  CAS  Google Scholar 

  3. G. Palumbo et al., Mater. Res. Soc. Symp. Proc., 238 (Pittsburgh, PA: MRS, 1992), p. 311.

    Google Scholar 

  4. K.T. Aust, U. Erb, and G. Palumbo, Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Micro-structure, NATO ASI Series (Netherlands: Kluwer, 1993), p. 107.

    Google Scholar 

  5. P.J. Goodhew, Metal Sci. J., 13 (1979), pp. 108–117.

    CAS  Google Scholar 

  6. D. Bouchet and L. Priester, Scripta Metall., 21 (1987), pp. 475–478.

    Article  CAS  Google Scholar 

  7. L. Priester, Revue Phys. Appl., 21 (1989), pp. 419–438.

    Google Scholar 

  8. H. Kokawa, T. Watanabe, and S. Karashima, Phil. Mag. A, 40 (1981), pp. 1239–1254.

    Google Scholar 

  9. J. Don and S. Majumdar, Acta Metall., 34 (1986), pp. 961–967.

    Article  CAS  Google Scholar 

  10. T. Watanabe, J. de Physique, 5 (1988), pp. 507–519.

    Google Scholar 

  11. K. Norring and J. Engstrom, 1985 Workshop on Primary-Side Stress Corrosion Cracking of PWR Steam Generator Tubing, NP-5158, ed. A.R. McIlree (Palo Alto, CA: EPRI, 1987), paper 3.

    Google Scholar 

  12. A.K. Agrawal and G. Frieling, 1987 Workshop on Secondary-Side Intergranular Corrosion Mechanisms, NP-4458 (Palo Alto, CA: EPRI, 1988).

    Google Scholar 

  13. G.P. Airey, Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (Houston, TX: NACE, 1984), pp. 462–478.

    Google Scholar 

  14. D.C. Crawford and G.S. Was, Metall. Trans. A, 23, (1992), pp. 1195–1206.

    Google Scholar 

  15. K.T. Aust, U. Erb, and G. Palumbo, Mat. Sci. Eng., A176 (1994), pp. 329–334.

    Google Scholar 

  16. P. Lin et al., Scripta Metall. et Mat., 33 (1995), pp. 1387–1392.

    Article  CAS  Google Scholar 

  17. E.M. Lehockey et al., Scripta Mat., 36 (1997), pp. 1211–1218.

    Article  CAS  Google Scholar 

  18. G. Palumbo, E.M. Lehockey, and P. Lin, JOM, 50 (2) (1998), pp. 40–43.

    CAS  Google Scholar 

  19. V. Randle, JOM, 50 (2) (1998), pp. 56–59.

    CAS  Google Scholar 

  20. G.S. Was, J.K. Sung, and T.M. Angeliu, Metall. Trans., 23A (1992), pp. 3343–3359.

    CAS  Google Scholar 

  21. G.S. Was, T.M. Angeliu, and J.K. Sung (paper presented at the Alloy 600 Experts Meeting, Warrenton, VA, 6–9 April, 1993).

  22. T.M. Angeliu, Ph.D. thesis, University of Michigan (1993).

  23. D.C. Crawford and G.S. Was, J. Electron Microcopy Technique, 19 (1991), pp. 345–360.

    Article  CAS  Google Scholar 

  24. V. Thaveeprungsriporn, J.F. Mansfield, and G.S. Was, J. Mater. Res., 9 (7) (1994), pp. 1887–1894.

    CAS  Google Scholar 

  25. J. Cadek, Mat. Sci. Eng., 94 (1987), pp. 79–92.

    Article  CAS  Google Scholar 

  26. D.J. Dingley and R.C. Pond, Acta Metall., 27 (1979), pp. 667–682.

    Article  CAS  Google Scholar 

  27. W. Lojkowski, Acta Metall. et Mater., 39, 8 (1991), pp. 1891–1899.

    Article  CAS  Google Scholar 

  28. A.H. King, Scripta Metall., 19 (1985), pp. 1517–1521.

    Article  Google Scholar 

  29. H. Kokawa, T. Watanabe, and S. Karashima, Phil. Mag. A, 44 (6) (1981), pp. 1239–1254.

    CAS  Google Scholar 

  30. H. Kokawa, T. Watanabe, and S. Karashima, J. of Mater. Sci., 18 (1983), pp. 1183–1194.

    Article  CAS  Google Scholar 

  31. T. Johannesson and A. Thölén, Metal Sci. J., 6 (1972), p. 189.

    Article  CAS  Google Scholar 

  32. P.R. Howell, J.O. Nilsson, and G.L. Dunlop, Phil. Mag. A., 38 (1) (1978), pp. 39–47.

    CAS  Google Scholar 

  33. W.A.T. Clark and D.A. Smith, J. of Mater. Sci., 14 (1979), p. 776.

    Article  CAS  Google Scholar 

  34. S. Sangal and K. Tangri, Metall. Trans. A, 20 (1989), p. 479–486.

    Google Scholar 

  35. V. Thaveeprungsriporn and G.S. Was, Metall. Trans. A, 28A (1997), pp. 2101–2112.

    Article  CAS  Google Scholar 

  36. F.N. Rhines, K.R. Craig, and R.T. DeHoff, Metall. Trans., 5 (1974), pp. 413–425.

    CAS  Google Scholar 

  37. L.E. Murr and S.H. Wang, Res Mechanica, 4 (1982), pp. 237–274.

    CAS  Google Scholar 

  38. K.J. Kurzydlowski, R.A. Varin, and W. Zielinski, Acta Metall., 32 (1984), pp. 71–78.

    Article  CAS  Google Scholar 

  39. T. Watanabe, Metall. Trans. A, 14A (1983), pp. 531–545.

    Google Scholar 

  40. V. Thaveeprungsriporn et al., Sixth International Symposium on Environmental Degredation of Materials in Nuclear Power Systems-Water Reactors (Warrendale, PA: TMS, 1993), pp. 721–727.

    Google Scholar 

  41. J.K. Sung and G.S. Was, Corrosion, 47 (1991) p. 824.

    CAS  Google Scholar 

  42. H. Kokawa, T. Watanabe, and S. Karashima, Phil. Mag. A, 40 (1981), pp. 1239–1254.

    Google Scholar 

  43. R.C. Pond, D.A. Smith, and P.W.J. Southerden, Phil. Mag. A, 37 (1978), pp. 27–40.

    CAS  Google Scholar 

  44. L.C. Lim and R. Raj, Acta Metall., 32 (1984), pp. 1183–1190.

    Article  CAS  Google Scholar 

  45. L.C. Lim and R.J. Raj, J. de Phys., supplement no. 4, 46 (1985), pp. c4-581–c4-595.

    Google Scholar 

  46. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Scripta. Metall., 23 (1989), pp. 799–803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Gary S. Was earned his Sc.D. in nuclear materials at the Massachusetts Institute of Technology in 1980. He is currently a professor and chair of the Department of of Nuclear Engineering and Radiological Sciences at University of Michigan. Dr. Was is a member of TMS.

Visit Thaveeprungsiporn earned his Ph.D. in nuclear engineering at the University of Michigan in 1966. He is currently a lecturer in the Department of Nuclear Technology, Faculty of Engineering at Chulalongkorn University, Thailand. Dr. Thaveeprungsiporn is also a member of TMS.

Douglas C. Crawford earned his Ph.D. in nuclear engineering at the University of Michigan in 1991. He is currently department manager of fuels technology in the Engineering Division at Argonne National Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Was, G.S., Thaveeprungsriporn, V. & Crawford, D.C. Grain boundary misorientation effects on creep and cracking in Ni-based alloys. JOM 50, 44–49 (1998). https://doi.org/10.1007/s11837-998-0249-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-998-0249-y

Keywords

Navigation