Skip to main content

Advertisement

Log in

Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone’s physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its “chemical similarity” with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beaman FD, Bancroft LW, Peterson JJ et al (2006) Bone graft materials and synthetic substitutes. Radiol Clin North Am 44:451–461. doi:10.1016/j.rcl.2006.01.001

    Article  PubMed  Google Scholar 

  2. Hegde C, Shetty V, Wasnik S et al (2013) Use of bone graft substitute in the treatment for distal radius fractures in elderly. Eur J Orthop Surg Traumatol 23:651–656. doi:10.1007/s00590-012-1057-1

    Article  PubMed  Google Scholar 

  3. Jakubietz MG, Gruenert JG, Jakubietz RG (2011) The use of beta-tricalcium phosphate bone graft substitute in dorsally plated, comminuted distal radius fractures. J Orthop Surg Res 6:24. doi:10.1186/1749-799X-6-24

    Article  PubMed Central  PubMed  Google Scholar 

  4. Goto A, Murase T, Oka K et al (2011) Use of the volar fixed angle plate for comminuted distal radius fractures and augmentation with a hydroxyapatite bone graft substitute. Hand Surg 16:29–37. doi:10.1142/S0218810411005023

    Article  PubMed  Google Scholar 

  5. Rajan GP, Fornaro J, Trentz O et al (2006) Cancellous allograft versus autologous bone grafting for repair of comminuted distal radius fractures: a prospective, randomized trial. J Trauma 60:1322–1329. doi:10.1097/01.ta.0000195977.18035.40

    Article  PubMed  Google Scholar 

  6. Luchetti R (2004) Corrective osteotomy of malunited distal radius fractures using carbonated hydroxyapatite as an alternative to autogenous bone grafting. J Hand Surg Am 29:825–834. doi:10.1016/j.jhsa.2004.06.004

    Article  PubMed  Google Scholar 

  7. Aghazadeh A, Rutger Persson G, Renvert S (2012) A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months. J Clin Periodontol 39:666–673. doi:10.1111/j.1600-051X.2012.01880.x

    Article  PubMed  Google Scholar 

  8. Meyle J, Hoffmann T, Topoll H et al (2011) A multi-centre randomized controlled clinical trial on the treatment of intra-bony defects with enamel matrix derivatives/synthetic bone graft or enamel matrix derivatives alone: results after 12 months. J Clin Periodontol 38:652–660. doi:10.1111/j.1600-051X.2011.01726.x

    Article  PubMed  Google Scholar 

  9. Misch CM (2010) Autogenous bone: is it still the gold standard? Implant Dent 19:361. doi:10.1097/ID.0b013e3181f8115b

    Article  PubMed  Google Scholar 

  10. Tovar N, Jimbo R, Gangolli R, Perez L et al (2014) Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. Int J Oral Maxillofac Surg 43:251–260. doi:10.1016/j.ijom.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  11. Zafiropoulos GG, Hoffmann O, Kasaj A et al (2007) Treatment of intrabony defects using guided tissue regeneration and autogenous spongiosa alone or combined with hydroxyapatite/beta-tricalcium phosphate bone substitute or bovine-derived xenograft. J Periodontol 78:2216–2225. doi:10.1902/jop.2007.070146

    Article  CAS  PubMed  Google Scholar 

  12. Belli E, Longo B, Balestra FM (2005) Autogenous platelet-rich plasma in combination with bovine-derived hydroxyapatite xenograft for treatment of a cystic lesion of the jaw. J Craniofac Surg 16:978–980. doi:10.1097/01.scs.0000183469.93084.f3

    Article  PubMed  Google Scholar 

  13. Hanna R, Trejo PM, Weltman RL (2004) Treatment of intrabony defects with bovine-derived Xenograft alone and in combination with platelet-rich plasma: a randomized clinical trial. J Periodontol 75:1668–1677. doi:10.1902/jop.2004.75.12.1668

    Article  PubMed  Google Scholar 

  14. Baldini M, DeSanctis M, Ferrari M (2011) Deproteinized bovine bone in periodontal and implant surgery. Dent Mater 27:61–70. doi:10.1016/j.dental.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  15. Cornell CN, Lane JM (1992) Newest factors in fracture healing. Clin Orthop 277:297–311

    PubMed  Google Scholar 

  16. Guda T, Walker JA, Singleton B et al (2014) Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. J Biomater Appl 28:1016–1027. doi:10.1177/0885328213491790

    Article  PubMed  Google Scholar 

  17. Ong JC, Kennedy MT, Mitra A et al (2012) Fixation of tibial plateau fractures with synthetic bone graft versus natural bone graft: a comparison study. Ir J Med Sci 181:247–252. doi:10.1007/s11845-011-0797-y

    Article  CAS  PubMed  Google Scholar 

  18. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054. doi:10.1016/j.biomaterials.2007.02.028

    Article  CAS  PubMed  Google Scholar 

  19. LeGeros RZ, Parsons JR, Daculsi G et al (1988) Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation–bioresorption. Ann N Y Acad Sci 523:268–271. doi:10.1111/j.1749-6632.1988.tb38519.x

    Article  CAS  PubMed  Google Scholar 

  20. Hulbert SF, Young FA, Mathews RS et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456. doi:10.1002/jbm.820040309

    Article  CAS  PubMed  Google Scholar 

  21. Spivak JM, Ricci JL, Blumenthal NC et al (1990) A new canine model to evaluate the biological response of intramedullary bone to implant materials and surfaces. J Biomed Mater Res 24:1121–1149. doi:10.1002/jbm.820240902

    Article  CAS  PubMed  Google Scholar 

  22. Roy DM, Linnehan SK (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222. doi:10.1038/247220a0

    Article  CAS  PubMed  Google Scholar 

  23. Nandi SK, Kundu B, Ghosh SK et al (2008) Efficacy of nano hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci 9:183–191. doi:10.4142/jvs.2008.9.2.183

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ghosh SK, Nandi SK, Kundu B et al (2008) Invivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater 86:217–227. doi:10.1002/jbm.b.31009

    Article  PubMed  Google Scholar 

  25. Erbe EM, Marx JG, Clineff TD et al (2001) Potential of an ultra porous beta- tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10:S141–S146. doi:10.1007/s005860100287

    Article  PubMed Central  PubMed  Google Scholar 

  26. Minami M, Takechi M, Ohta K et al (2013) Bone formation and osseointegration with titanium implant using granular-and block-type porous hydroxyapatite ceramics (IP-CHA). Dent Mater J 32:753–760. doi:10.4012/dmj.201-169

    Article  CAS  PubMed  Google Scholar 

  27. Yamamiya K, Okuda K, Kawase T et al (2008) Tissue-engineered cultured periosteum used with platelet-rich plasma and hydroxyapatite in treating human osseous defects. J Periodontol 79:811–888. doi:10.1902/jop.2008.070518

    Article  PubMed  Google Scholar 

  28. den Boer FC, Wippermann BW, Blokhuis TJ et al (2003) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein1 or autologous bone marrow. J Orthop Res 21:521–528. doi:10.1016/S0736-0266(02)00205-X

    Article  Google Scholar 

  29. Moreira-Gonzalez A, Jackson IT, Miyawaki T et al (2003) Augmentation of the craniomaxillofacial region using porous hydroxyapatite granules. Plast Reconstr Surg 111:1808–1817. doi:10.1097/01.PRS.0000055432.20074.93

    Article  PubMed  Google Scholar 

  30. Itokazu M, Matsunaga T, Ishii M et al (1996) Use of arthroscopy and interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Arch Orthop Trauma Surg 115:45–48. doi:10.1007/BF00453217

    Article  CAS  PubMed  Google Scholar 

  31. Jarcho M (1986) Biomaterials aspects of calcium phosphates: properties and application. Dent Clin North Am 30:25–67

    CAS  PubMed  Google Scholar 

  32. Balcik C, Tokdemir T, Senköylü A et al (2007) Early weight bearing of porous HA/TCP (60/40) ceramics invivo: a longitudinal study in a segmental bone defect model of rabbit. Acta Biomater 3:985–996. doi:10.1016/j.actbio.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  33. Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84:454–464

    PubMed  Google Scholar 

  34. Saikia KC, Bhattacharya TD, Bhuyan SK et al (2008) Calcium phosphate ceramics as bone graft substitutes in filling bone tumor defects. Indian J Orthop 42:169–172. doi:10.4103/0019-5413.39588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Valen M, Ganz SD (2002) Part I—a synthetic bioactive resorbable graft (SBRG) for predictable implant reconstruction. J Oral Implantol 28(4):167–177

    Article  PubMed  Google Scholar 

  36. Ricci JL, Blumenthal NC, Spivak JM, Alexander H (1992) Evaluation of a low-temperature calcium phosphate particulate implant material: physical–chemical properties and in vivo bone response. J Oral Maxillofac Surg 50:969–978

    Article  CAS  PubMed  Google Scholar 

  37. Valen M (2013) Letter to Editor. JOI 39(2):234–235 (Re: Fluoride-treated bioresorbable synthetic hydroxylapatite promotes proliferation and differentiation of human osteoblastic MG-63 cells)

  38. Kimoto K, Okudera T, Okudera H, Nordquist W, Krutchkoff D (2011) Part I: crystalline fluorapatite-coated hydroxylapatite; physical properties. JOI 37(1):27–33

    Google Scholar 

  39. Nordquist WD, Okudera H, Kitamura Y, Kimoto K, Okudera T, Krutchoff D (2011) Part II crystalline fluorapatite-coated hydroxylapatite implant material: a dog study with histologic comparison of osteogenesis seen with FA-coated HA grafting material versus HA controls: potential bacteriostatic effect of fluoridated HA. JOI 37(1)

  40. Nordquist WD, Krutchoff D (2011) Part III: crystalline fluorapatite-coated hydroxylapatite; potential use as a bacteriostatic agent for both pre-implant cases and retreatment of infected implant sites. A report of 4 cases. JOI 37(1)

  41. Ohno M, Kimoto K et al (2013) Fluoride-treated bio-resorbable synthetic hydroxyapatite promotes proliferation and differentiation of human osteoblastic MG-63 cells. JOI 39(2):154–160

    Google Scholar 

  42. Lalidou F, Kolios G, Drosos GI (2014) Bone infections and bone graft substitutes for local antibiotic therapy. Surg Technol Int 24:353–362

    PubMed  Google Scholar 

  43. Jones NF, Brown EE, Mostofi A et al (2005) Healing of a scaphoid nonunion using human bone morphogenetic protein. J Hand Surg Am 30:528–533. doi:10.1016/j.jhsa.2004.12.005

    Article  PubMed  Google Scholar 

  44. Santos MH, Valerio P, Goes AM et al (2007) Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn2+. Biomed Mater 2:135–141. doi:10.1088/1748-6041/2/2/012

    Article  CAS  PubMed  Google Scholar 

  45. Webster TJ, Massa-Schlueter EA, Smith JL et al (2004) Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 25:2111–2121. doi:10.1016/j.biomaterials.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  46. Irigaray JL, Oudadesse H, Jallot E et al (1999) Kinetics resorption after implantation of some hydroxyapatite compounds used as biomaterials. Adv Sci Technol 28:399–403

    CAS  Google Scholar 

  47. Moroni A, Pegreffi F, Cadossi M et al (2005) Hydroxyapatite-coated external fixation pins. Expert Rev Med Devices 2:465–471. doi:10.1586/17434440.2.4.465

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen HQ, Deporter DA, Pilliar RM et al (2004) The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti-alloy implants. Biomaterials 25:865–876. doi:10.1016/S0142-9612(03)00607-0

    Article  CAS  PubMed  Google Scholar 

  49. Pommer A, Muhr G, David A (2002) Hydroxyapatite-coated Schanz pins in external fixators used for distraction osteogenesis: a randomized, controlled trial. J Bone Joint Surg Am 84:1162–1166

    Article  PubMed  Google Scholar 

  50. Jang DW, Franco RA, Sarkar SK et al (2014) Fabrication of porous hydroxyapatite scaffolds as artificial bone perform and its biocompatibility evaluation. ASAIO J 60:216–223. doi:10.1097/MAT.0000000000000032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kwon BJ, Kim J, Kim YH et al (2013) Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Artif Organs 37:663–670. doi:10.1111/aor.12047

    Article  CAS  PubMed  Google Scholar 

  52. Kenny EB, Lekovic V, Han T et al (1985) The use of a porous hydroxylapatite implant in periodontal defects. I. Clinical results after six months. J Periodontol 56:82–88. doi:10.1902/jop.1985.56.2.82

    Article  Google Scholar 

  53. Martin RB, Chapman MW, Sharkey NA et al (1993) Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 14:341–348. doi:10.1016/0142-9612(93)90052-4

    Article  CAS  PubMed  Google Scholar 

  54. Holmes RE, Wardrop RW, Wolford LM (1988) Hydroxylapatite as a bone graft substitute in orthognathic surgery: histologic and histometric findings. J Oral Maxillofac Surg 46:661–671. doi:10.1016/0278-2391(88)90109-7

    Article  CAS  PubMed  Google Scholar 

  55. Rosen HM, McFarland MM (1990) The biologic behavior of hydroxyapatite implanted into the maxillofacial skeleton. Plast Reconstr Surg 85:718–723

    Article  CAS  PubMed  Google Scholar 

  56. Motomiya M, Ito M, Takahata M et al (2007) Effect of hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J 16:2215–2224. doi:10.1007/s00586-007-0501-0

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kaito T, Mukai Y, Nishikawa M et al (2006) Dual hydroxyapatite composite with porous and solid parts: experimental study using canine lumbar interbody fusion model. J Biomed Mater Res B Appl Biomater 78:378–384. doi:10.1002/jbm.b.30498

    Article  PubMed  Google Scholar 

  58. Norman ME, Elgendy HM, Shors EC et al (1994) An in vitro evaluation of coralline porous hydroxyapatite as a scaffold for osteoblast growth. Clin Mater 17:85–91

    Article  CAS  PubMed  Google Scholar 

  59. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278

    CAS  PubMed  Google Scholar 

  60. Wolfe SW, Pike L, Slade JF 3rd et al (1999) Augmentation of distal radius fracture fixation with coralline hydroxyapatite bone graft substitute. J Hand Surg Am 24:816–827

    Article  CAS  PubMed  Google Scholar 

  61. Bucholz RW, Carlton A, Holmes RE (1987) Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18:323–334

    CAS  PubMed  Google Scholar 

  62. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626–633

    Article  CAS  PubMed  Google Scholar 

  63. Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    PubMed  Google Scholar 

  64. Boden SD, Martin GJ Jr, Morone M et al (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine (Phila Pa 1976) 24:320–327

    Article  CAS  Google Scholar 

  65. Zdeblick TA, Cooke ME, Kunz DN et al (1994) Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine (Phila Pa 1976) 19:2348–2357

    Article  CAS  Google Scholar 

  66. Georgiadis NS, Terzidou CD, Dimitriadis AS (1999) Coralline hydroxyapatite sphere in orbit restoration. Eur J Ophthalmol 9:302–308

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S.R., Passi, D., Singh, P. et al. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Ir J Med Sci 184, 101–106 (2015). https://doi.org/10.1007/s11845-014-1199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-014-1199-8

Keywords

Navigation