Skip to main content

Advertisement

Log in

Principles and Applications of Light Backscattering Imaging in Quality Evaluation of Agro-food Products: a Review

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In recent years, due to the increasing consciousness of quality in the food and health sector, much progress has been made in developing non-invasive techniques for the evaluation or inspection of internal qualitative parameters of fruits, vegetables, and processed foodstuffs considering, e.g., moisture content, soluble solid content, acidity, and mechanical properties. This paper reviews the theoretical and technical principles as well as the recent achievements and applications of light backscattering imaging for nondestructive evaluation of food and agricultural produce. The results suggest the potential use of this emerging technique in the food industry. Further attempts are pointed out to improve its performance through utilizing advanced image processing coupled with artificial intelligence techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baranyai, L., & Zude, M. (2008). Analysis of laser light migration in apple tissue by Monte Carlo simulation. Progress in Agricultural Engineering Sciences, 4, 45–59.

    Article  Google Scholar 

  • Baranyai, L., & Zude, M. (2009). Analysis of laser light propagation in kiwifruit using backscattering and Monte Carlo simulation. Computer and Electronics in Agriculture, 69, 33–39.

    Article  Google Scholar 

  • Baranyai, L., Regen, C., & Zude, M. (2009). Monitoring optical properties of apple tissue during cool storage. Bornimer Agrartechnische Berichte, Leibniz Institute for Agricultural Engineering Potsdam-Bornim (ATB), Germany. Heft 69, pp. 112–119

  • Birth, G. S. (1976). How light interacts with foods. In J. J. Gaffney (Ed.), Quality detection in foods (pp. 6–11). St. Joseph: ASAE.

    Google Scholar 

  • Bonissone, P. P., Ruspini, E. H., & Pedrycz, W. (1998). Handbook of fuzzy computation. Oxford: Taylor and Francis.

    Book  Google Scholar 

  • Bora, P. S., Rocha, R. V. M., Narain, N., Moreira-Monteiro, A. C., & Moreira, R. A. (2003). Characterization of principal nutritional components of Brazilian oil palm (Eliaes guineensis) fruits. Bioresources Technology, 87(1), 1–5.

    Article  CAS  Google Scholar 

  • Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision—a review. Journal of Food Engineering, 61, 3–16.

    Article  Google Scholar 

  • Carlini, P., Massantini, R., & Mencarelli, F. (2000). Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection. Journal of Agricultural and Food Chemistry, 48, 5236–5242.

    Article  CAS  Google Scholar 

  • Cheng, X., Chen, Y., Tao, Y., Wang, C., Kim, M., & Lefcourt, A. (2004). A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection. Transactions of ASAE, 47(4), 1313–1320.

    Google Scholar 

  • Choi, C. H., Abbott, J. A., Park, B., Chen, Y. R. (1997). Prediction of soluble solids and firmness in apples by visible/near-infrared spectroscopy. In: Proceeding of the Fifth International Symposium of Fruit, Nut and Vegetable Production Engineering. Davis, CA, USA.

  • Choi, K. H., Lee, K. J., & Kim, G. (2006). Nondestructive quality evaluation technology for fruits and vegetables using near-infrared spectroscopy. International Seminar on Enhancing Export Competitiveness of Asian Fruits. Bangkok, Thailand.

  • Cluff, K., Naganathan, G. K., Subbiah, J., Lu, R., Calkins, C. R., & Samal, A. (2008). Optical scattering in beef steak to predict tenderness using hyperspectral imaging in the VIS-NIR region. Sensing and Instrumentation for Food Quality and Safety, 2, 189–196.

    Article  Google Scholar 

  • Cubeddu, R., Pifferi, A., Taroni, P., & Torricelli, A. (2002). Measuring fresh fruit and vegetable quality: advanced optical methods. In W. Jongen (Ed.), Fruit and vegetable processing Improving quality, vol. 450 (p. 388). Boca Raton: CRC.

    Google Scholar 

  • Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4, 487–504.

    Article  Google Scholar 

  • Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1, 131–156.

    Article  Google Scholar 

  • Farrell, T. J., Patterson, M. S., & Wilson, B. (1992). A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical Physics, 19, 879–888.

    Article  CAS  Google Scholar 

  • Fish, K. E., Johnson, J. D., Dorsey, R. E., & Blodgett, J. G. (2004). Using an artificial neural network trained with a genetic algorithm to model brand share. Journal of Business Researches, 57(1), 79–85.

    Article  Google Scholar 

  • Gutierrez-Osuna, R. (2002). Pattern analysis for machine olfaction: A review. IEEE Sensors Journal, 2(3), 189–202.

    Article  Google Scholar 

  • Hassun, M. (2003). Fundamentals of artificial neural networks. Cambridge: MIT.

    Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Heijden, F. V. D., Duin, R. P. W., Ridder, D. D., & Tax, D. M. J. (2004). Classification, parameter estimation and state estimation: An engineering approach using MATLAB. England: Wiley.

    Book  Google Scholar 

  • Heyney, L. G., & Greenstein, J. L. (1941). Diffuse radiation in the galaxy. Journal of Astrophysics, 93, 70–83.

    Article  Google Scholar 

  • Hornberg, A. (2006). Handbook of machine vision. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Irtwange, S. V. (2006). Maturity, quality and marketing of fruits and vegetables. Agricultural Engineering International: the CIGR Ejournal, Invited Overview, VIII(7), 1–9.

    Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Jiang, L., Zhu, B., & Tao, Y. (2010). Hyperspectral image classification methods. In D. W. Sun (Ed.), Hyperspectral imaging for food quality analysis and control (pp. 79–98). the Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Karray, F. O., & Silva, C. D. (2004). Soft computing and intelligent systems design: Theory, tools and applications. New York: Addison Wesley Pearson.

    Google Scholar 

  • Kienle, A., Lilge, L., Patterson, M. S., Hibst, R., Steiner, R., & Wilson, B. C. (1996). Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Applied Optics, 35, 2304–2314.

    Article  CAS  Google Scholar 

  • Knuttel, A., & Boehlau-Godau, M. (2000). Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. Journal of Biomedical Optics, 5(1), 83–92.

    Article  CAS  Google Scholar 

  • Lai, J., Li, Z., Wang, C., & He, A. (2005). Experimental measurement of the refractive index of biological tissues by total internal reflection. Applied Optics, 44(10), 1845–1849.

    Article  Google Scholar 

  • Lai, J. C., Zhang, Y. Y., Li, Z. H., Jiang, H. J., & He, A. Z. (2010). Complex refractive index measurement of biological tissues by attenuated total reflection ellipsometry. Applied Optics, 49, 3235–3238.

    Article  Google Scholar 

  • Li, X., Cheng, G., Huang, N., Wang, L., Liu, F., & Gu, Y. (2010). Light distribution in intravascular low level laser therapy applying mathematical simulation: A comparative study. Journal of X-Ray Science and Technology, 18, 47–55.

    Google Scholar 

  • Liu, H., & Motoda, H. (2008). In H. Liu & H. Motoda (Eds.), Less is more in computational methods of feature selection (pp. 3–17). New York: Taylor and Francis.

    Google Scholar 

  • Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491–502.

    Article  Google Scholar 

  • Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology. doi:10.1007/s11947-011-0725-1.

  • Lu, R. (2004). Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31, 147–157.

    Article  Google Scholar 

  • Lu, R. (2008). Quality evaluation of fruit by hyperspectral imaging. In D. W. Sun (Ed.), Computer vision technology for food quality evaluation, 583 (p. 319). Amsterdam: Academic.

    Chapter  Google Scholar 

  • Lu, R. (2009). Spectroscopic technique for measuring the texture of horticultural products: Spatially resolved. In M. Zude (Ed.), Optical monitoring of fresh and processed agricultural crops, vol. 450 (p. 391). Boca Raton: CRC.

    Google Scholar 

  • Lu, R., & Peng, Y. (2006). hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161–171.

    Article  Google Scholar 

  • Lu, R., Qin, J., & Peng, Y. (2006). Measurement of the optical properties of apples by hyperspectral imaging for assessing fruit quality. ASABE paper no 066179. St. Joseph: ASABE.

    Google Scholar 

  • Martynenko, A. I. (2006). Computer-vision system for control of drying processes. Drying Technology, 24, 879–888.

    Article  Google Scholar 

  • McGlone, V. A., Abe, H., & Kawano, S. (1997). Kiwifruit firmness by near infrared light scattering. Journal of Near Infrared Spectroscopy, 5(1), 83–89.

    Article  CAS  Google Scholar 

  • Mireei, S. A. (2010). Nondestructive determination of effective parameters on maturity of mozafati & shahani date fruits by NIR spectroscopy technique. PhD thesis, Department of Mechanical Engineering of Agricultural Machinery, University of Tehran, Iran. In Persian.

  • Moghimi, A., Agh-Khani, M., Sazegarnia, A., & Sarmad, M. (2008). Non-destructive evaluation of kiwifruit using visible and NIR spectroscopy. Horticultural Science, 22(2), 113–121. In Persian.

    Google Scholar 

  • Moons, E., Dardnne, P., Dubois, A., & Sindic, M. (1997). Nondestructive visible and NIR spectroscopy measurement for the determination of apple internal quality. Acta Horticulturae, 517, 441–448.

    Google Scholar 

  • Motwani, M. C., Gadiya, M. C., Motwani, R. C., Harris, F. C. (2004). Survey of image denoising techniques. In: Proceedings of Global Signal Processing Expo and Conference (GSPx’04), Santa Clara, California, USA.

  • Mujumdar, A. S. (2000). Drying technology in agriculture and food sciences. New Delhi: Oxford and IBH.

    Google Scholar 

  • Nicolai, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, K. I., & Lammertyn, J. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46, 99–118.

    Article  Google Scholar 

  • Noh, H. K., & Lu, R. (2005). Hyperspectral reflectance and fluorescence for assessing apple quality. ASAE paper no 053069. St. Joseph: ASAE.

    Google Scholar 

  • Noh, H. K., & Lu, R. (2007). Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biology and Technology, 43, 193–201.

    Article  Google Scholar 

  • Omid, M., Mahmoudi, & Omid, M. H. (2009). An intelligent system for sorting pistachio nut varieties. Expert Systems with Applications, 36, 11528–11535.

    Article  Google Scholar 

  • Omid, M., Mahmoudi, & Omid, M. H. (2010). Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Systems with Applications, 37, 7205–7212.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Pavlin, M., Jarm, T., & Miklavcic, D. (2003). Monte-Carlo simulation of light transport for NIRS measurements in tumors of elliptic geometry. Advances in Experimental Medicine and Biology, 530, 41–49.

    Article  Google Scholar 

  • Paz, P., Sanchez, M. T., Perez-Marin, D., Guerrero, J. E., & Garrido-Varo, A. (2008). Nondestructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 56, 2565–2570.

    Article  CAS  Google Scholar 

  • Peng, Y., & Lu, R. (2005). Modeling multispectral scattering profiles for prediction of apple fruit firmness. Transactions of ASAE, 48(1), 235–242.

    Google Scholar 

  • Peng, Y., & Lu, R. (2006a). An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part I: Acquisition and characterization of scattering images. Transactions of ASAE, 49(1), 259–267.

    Google Scholar 

  • Peng, Y., & Lu, R. (2006b). An LCTF-based multispectral imaging system for estimation of apple fruit firmness: Part II: Selection of optimal wavelengths and development of prediction models. Transactions of ASAE, 49(1), 269–275.

    Google Scholar 

  • Peng, Y., & Lu, R. (2006c). Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biology and Technology, 41, 266–274.

    Article  Google Scholar 

  • Peng, Y., & Lu, R. (2007). Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. Journal of Food Engineering, 82, 142–152.

    Article  Google Scholar 

  • Pratt, W. K. (1978). Digital image processing. New York: Wiley.

    Google Scholar 

  • Prieto, N., Roehe, R., Lavin, P., Batten, G., & Andres, S. (2009). Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Science, 83, 175–186.

    Article  CAS  Google Scholar 

  • Qin, J. (2007). Measurement of the optical properties of horticultural and food products by hyperspectral imaging. PhD thesis, Michigan State University, East Lansing, MI, USA.

  • Qin, J., & Lu, R. (2005). Determination of the optical properties of turbid materials by hyperspectral diffuse reflectance. ASAE paper no 053068. St. Joseph: ASAE.

    Google Scholar 

  • Qin, J., & Lu, R. (2006). Hyperspectral diffuse reflectance imaging for rapid, noncontact measurement of the optical properties of turbid materials. Applied Optics, 45(32), 8366–8373.

    Article  Google Scholar 

  • Qin, J., & Lu, R. (2007a). Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Applied Spectroscopy, 61(4), 388–396.

    Article  CAS  Google Scholar 

  • Qin, J., & Lu, R. (2007b). Monte Carlo simulation of light propagation in Apples. ASABE Annual International Meeting, paper no 073058. St. Joseph: ASABE.

    Google Scholar 

  • Qin, J., & Lu, R. (2008). Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biology and Technology, 49, 355–365.

    Article  Google Scholar 

  • Qin, J., Lu, R., & Peng, Y. (2009). Prediction of apple internal quality using spectral absorption and scattering properties. Transactions of the ASABE, 52(2), 499–507.

    CAS  Google Scholar 

  • Qing, Z., Ji, B., & Zude, M. (2007a). Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. Journal of Food Engineering, 82, 58–67.

    Article  Google Scholar 

  • Qing, Z., Ji, B., & Zude, M. (2007b). Wavelength selection for predicting physicochemical properties of apple fruit based on near infrared spectroscopy. Journal of Food Quality, 30, 511–526.

    Article  CAS  Google Scholar 

  • Qing, Z., Ji, B., & Zude, M. (2008). Non-destructive analysis of apple quality parameters by means of laser-induced light backscattering imaging. Postharvest Biology and Technology, 48, 215–222.

    Article  Google Scholar 

  • Romano, G., Baranyai, L., Gottschalk, K., & Zude, M. (2008). An approach for monitoring the moisture content changes of drying banana slices with laser light backscattering imaging. Food and Bioprocess Technology, 1, 410–414.

    Article  Google Scholar 

  • Romano, G., Argyropoulos, D., Gottschalk, K., Cerruto, E., & Muller, J. (2010). Influence of colour changes and moisture content during banana drying on laser backscattering. International Journal of Agricultural and Biological Engineering, 3(2), 46–51.

    Google Scholar 

  • Romano, G., Nagle, M., Argyropoulos, D., & Muller, J. (2011). Laser light backscattering to monitor moisture content, soluble solid content, and hardness of apple tissue during drying. Journal of Food Engineering, 104, 657–662.

    Article  Google Scholar 

  • Romano, G., Nagel, M., Argyropoulos, D., & Muller, J. (2011). An innovative laser-based optical technology to predict moisture content and color of Bell pepper (Capsicum annuum, L) during drying. ASABE paper no 1111059. St. Joseph: ASABE.

    Google Scholar 

  • Stawczyk, J., Munoz, I., Collell, C., & Comaposada, J. (2009). Control system for sausage drying based on on-line NIR aw determination. Drying Technology, 27, 1338–1343.

    Article  CAS  Google Scholar 

  • Sukumar, S. (2005). Enhanced multispectral polarimetric imaging techniques utilizing an optical tumor phantom. M.Sc. thesis, University of Akron, Ohio, USA.

  • Sun, D. W. (2010). Hyperspectral imaging for food quality analysis and control. San Diego: Academic.

    Google Scholar 

  • Tilley, R. J. D. (2011). Colour and the optical properties of materials: An exploration of the relationship between light, the optical properties of materials and colour. Chichester: Wiley.

    Google Scholar 

  • Tu, K., Jancsok, P., Nicolai, B., & De Baerdemaeker, J. (2000). Use of laser-scattering imaging to study tomato-fruit quality in relation to acoustic and compression measurements. International Journal of Food Science and Technology, 35, 503–510.

    Article  CAS  Google Scholar 

  • Tu, K., Chen, Y. Y., Ren, K., Shao, X. F., Dong, Q. L., & Pan, L. Q. (2006). Modeling apple quality changes based on laser scattering image analysis under simulated shelf life conditions. ISHS Acta Horticulturae, 712, 371–379.

    Google Scholar 

  • Ventura, M. De, Jager, A., De Putter, H., & Roelofs, F. P. M. M. (1998). Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS). Postharvest Biology and Technology, 14(1), 21–27.

    Article  Google Scholar 

  • Wang, L., Jacques, S. L., & Zheng, L. (1995). MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 47(2), 131–146.

    Article  CAS  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Zeng, X. S., Ruan, R. R., Fulcher, R. G., & Chen, P. (1996). Evaluation of soybean seedcoat cracking during drying: Part II: Using MRI. Drying Technology, 14(7&8), 1595–1623.

    Article  Google Scholar 

  • Zhang, Y., Xu, J., Yuan, Z., Xu, H., & Yu, Q. (2010). Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresources Technology, 101(9), 3153–3158.

    Article  CAS  Google Scholar 

  • Zude, M. (2009). Optical monitoring of fresh and processed agricultural crops, vol. 450 (p. 391). Boca Raton: CRC.

    Google Scholar 

  • Zude, M., Pflanz, M., Kaprielian, C., & Aivazian, B. L. (2008). NIRS as a tool for precision horticulture in the citrus industry. Biosystems Engineering, 99(3), 455–459.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Renfu Lu and Dr. Jianwei Qin for their valuable helps in providing of some documents to do a comprehensive literature review regarding this paper. We would also like to thank Prof. Manuela Zude for proofreading this paper as well as for her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Mollazade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollazade, K., Omid, M., Tab, F.A. et al. Principles and Applications of Light Backscattering Imaging in Quality Evaluation of Agro-food Products: a Review. Food Bioprocess Technol 5, 1465–1485 (2012). https://doi.org/10.1007/s11947-012-0821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0821-x

Keywords

Navigation