Skip to main content
Log in

Texturing and Instant Cooling of Rapeseed as Pretreatment Prior to Pressing and Solvent Extraction of Oil

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Instant controlled pressure drop process (DIC) was used to texture rapeseeds in order to intensify oil extraction performances of both pressing and solvent extraction processes. Solvent extraction from both DIC-textured and non-treated raw material RM seeds was achieved with n-hexane using separately accelerated solvent extraction (ASE) and dynamic maceration (DM). ASE allowed quantifying the extraction yields while the extraction kinetics issued from DM experimental data was studied through coupled washing/diffusion CWD phenomenological model. ASE oil contents were 622.5 ± 0.5 and 664.4 ± 0.5 g oil/kg dry dry basis ddb for untreated and DIC-textured seeds, respectively. In terms of kinetics, 45-min DM of DIC-treated seeds implied higher yields than 8-h DM of RM (467.8 ± 0.5 against 435.6 ± 0.5 g oil/kg ddb). Moreover, pressing oil yields reached 553.5 ± 0.5 against 490 ± 0.5 g oil/kg ddb for DIC and RM seeds, respectively. Besides, optimized DIC treatment allowed obtaining preservation of lipid fatty acid profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aider, M., & Barbana, C. (2011). Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity—a practical and critical review. Trends in Food Science & Technology, 22(1), 21–39.

    Article  CAS  Google Scholar 

  • Allaf K. (2009). The new instant controlled pressure—drop DIC technology. In: Essential oils and aromas: green extraction and application. Chemat F: New Delhi, pp 85–121.

  • Allaf, T. (2014). Intermitent extraction process via solvent (DIC-TriPolium). International demand PCT/FR2015/051123; priority date: 25/04/2014 (France Patent); International classification and CIB: INV.B01d11/02.

  • Allaf, K., Besombes, C., Berka-Zougali, B., Kristiawan, M., Sobolik, V., & Allaf, T. (2011). Instant controlled pressure drop technology in plant extraction processes. In N. Lebovka, E. Vorobiev, & F. Chemat (Eds.), Enhancing extraction processes in the food industry. Contemporary food engineering series (pp. 255–302). Dublin: CRC Press Taylor & Francis Group.

    Chapter  Google Scholar 

  • Allaf, T., Mounir, S., Tomao, V., & Chemat, F. (2012). Instant controlled pressure drop combined to ultrasounds as innovative extraction process combination: fundamental aspects. Procedia Engineering, 42, 1061–1078.

    Article  Google Scholar 

  • Allaf, T., Fine, F., Tomao, V., Nguyen, C., Ginies, C., & Chemat, F. (2014a). Impact of instant controlled pressure drop pre-treatment on solvent extraction of edible oil from rapeseed seeds. OCL, 21(3), A301.

    Article  Google Scholar 

  • Allaf, T., Zougali, B., Nguyen, C., Negm, M., & Allaf, K. (2014b). DIC texturing for solvent extraction. In T. Allaf & K. Allaf (Eds.), Instant controlled pressure drop (D.I.C.) in food processing. Food engineering series (pp. 127–149). New York: Springer.

    Chapter  Google Scholar 

  • Amor, B. B., Lamy, C., Andre, P., & Allaf, K. (2008). Effect of instant controlled pressure drop treatments on the oligosaccharides extractability and microstructure of Tephrosia purpurea seeds. Journal of Chromatography A, 1213(2), 118–124.

    Article  Google Scholar 

  • Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., & Achachlouei, B. F. (2010). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry, 121(4), 1211–1215.

    Article  CAS  Google Scholar 

  • Ben Amor, B. (2008). Maîtrise de l’aptitude technologique de la matière végétale dans les opérations d’extraction de principes actifs: texturation par détente instantanée contrôlée (DIC). La Rochelle.

  • Ben Amor, B., & Allaf, K. (2009). Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from Malaysian Roselle (Hibiscus sabdariffa). Food Chemistry, 115(3), 820–825.

    Article  CAS  Google Scholar 

  • Besombes, C., Berka-Zougali, B., & Allaf, K. (2010). Instant controlled pressure drop extraction of lavandin essential oils: fundamentals and experimental studies. Journal of Chromatography A, 1217(44), 6807–6815.

    Article  CAS  Google Scholar 

  • Bouallegue, K., Allaf, T., Besombes, C., Younes, R. B., & Allaf, K. (2015). Phenomenological modeling and intensification of texturing/grinding-assisted solvent oil extraction; case of date seeds (Phoenix Dactylifera L.). Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2015.03.014.

    Google Scholar 

  • Boutin, O., & Badens, E. (2009). Extraction from oleaginous seeds using supercritical CO2: experimental design and products quality. Journal of Food Engineering, 92(4), 396–402.

    Article  CAS  Google Scholar 

  • El Kadi, I. (2012). Contribution à l’amélioration de l’utilisation alimentaire du tourteau de canola: Décoloration par du peroxyde d’hydrogène et impact sur le produit. Université Laval.

  • Fernández, M. B., Perez, E. E., Crapiste, G. H., & Nolasco, S. M. (2012). Kinetic study of canola oil and tocopherol extraction: parameter comparison of nonlinear models. Journal of Food Engineering, 111(4), 682–689.

    Article  Google Scholar 

  • Kraujalis, P., Venskutonis, P. R., Pukalskas, A., & Kazernavičiūtė, R. (2013). Accelerated solvent extraction of lipids from Amaranthus spp. seeds and characterization of their composition. LWT - Food Science and Technology, 54(2), 528–534.

    Article  CAS  Google Scholar 

  • Kristiawan, M., Sobolik, V., Klíma, L., & Allaf, K. (2011). Effect of expansion by instantaneous controlled pressure drop on dielectric properties of fruits and vegetables. Journal of Food Engineering, 102(4), 361–368.

    Article  Google Scholar 

  • Lacki, K., & Duvnjak, Z. (1998). Decrease of phenolic content in canola meal using a polyphenol oxidase preparation from trametes versicolor: effect of meal saccharification. Biotechnology Techniques, 12(1), 31–34.

    Article  CAS  Google Scholar 

  • Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.-C., & Fine, F. (2012). Rapeseed and sunflower meal: a review on biotechnology status and challenges. Applied Microbiology and Biotechnology, 95(5), 1105–1114.

    Article  CAS  Google Scholar 

  • Meziane, S., & Kadi, H. (2008). Kinetics and thermodynamics of oil extraction from olive cake. Journal of the American Oil Chemists’ Society, 85(4), 391–396.

    Article  CAS  Google Scholar 

  • Mounir, S., & Allaf, K. (2008). Three-stage spray drying: new process involving instant controlled pressure drop. Drying Technology, 26(4), 452–463.

    Article  CAS  Google Scholar 

  • Newkirk, R. W., Classen, H. L., & Edney, M. J. (2003). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Animal Feed Science and Technology, 104(1–4), 111–119.

    Article  CAS  Google Scholar 

  • Niu, C. H., Baylak, T., Wilson, D. I., & Zhang, M. (2014). Pelletisation of canola meal by extrusion–spheronisation for ethanol dehydration. Biomass and Bioenergy, 66, 116–125.

    Article  CAS  Google Scholar 

  • Oyinlola, A., Ojo, A., & Adekoya, L. O. (2004). Development of a laboratory model screw press for peanut oil expression. Journal of Food Engineering, 64(2), 221–227.

    Article  Google Scholar 

  • Prakash, A. & Stigler, M. (2012). FAO statistical yearbook. Food and Agriculture Organization of The United Nations In. p^pp.

  • Simopoulos, A. P., Leaf, A., & Salem, N., Jr. (2000). Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 63(3), 119–121.

    Article  CAS  Google Scholar 

  • So, G. C., & MacDonald, D. G. (1986). Kinetics of oil extraction from canola (rapeseed). The Canadian Journal of Chemical Engineering, 64(1), 80–86.

    Article  Google Scholar 

  • Teh, S.-S., & Birch, J. (2013). Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. Journal of Food Composition and Analysis, 30(1), 26–31.

    Article  CAS  Google Scholar 

  • Ucar, S., & Ozkan, A. R. (2008). Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology, 99(18), 8771–8776.

    Article  CAS  Google Scholar 

  • Van, C. N. (2010) Maîtrise de l’aptitude technologique des oléagineux par modification structurelle: applications aux opérations d’extraction et de transestérification in-situ. Université de La Rochelle

  • Wang, W.-C., Turner, T. L., Stikeleather, L. F., & Roberts, W. L. (2012). Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil. Chemical Engineering and Processing Process Intensification, 57–58, 51–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Allaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouallegue, K., Allaf, T., Ben Younes, R. et al. Texturing and Instant Cooling of Rapeseed as Pretreatment Prior to Pressing and Solvent Extraction of Oil. Food Bioprocess Technol 9, 1521–1534 (2016). https://doi.org/10.1007/s11947-016-1734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1734-x

Keywords

Navigation