Skip to main content

Advertisement

Log in

Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To overcome long drying time, low energy efficiency and poor product quality associated with conventional drying, a radio frequency (RF) vacuum technology is proposed for drying kiwifruit slices using a 27.12 MHz, 3 kW RF-vacuum drying system. The results demonstrated that the process variables, electrode gap, vacuum pressure, and sample thickness, had major effects on the RF-vacuum drying. The RF-vacuum drying was associated with internal heating and rapid drying resulting in 65% reduction of hot air drying (60 °C) time. Moreover, kiwifruits dehydrated by RF-vacuum drying were associated with better color stability, higher vitamin C retention, and higher rehydration capacity (p < 0.05) as compared with hot-air-dried samples. Based on acceptable drying rate, stable temperature and avoiding arcing, a RF-vacuum drying protocol with the electrode gap of 60 mm, vacuum pressure of 0.02 MPa, and sample thickness of 8 mm was identified. Despite some differences observed in individual fruit slices, the RF-vacuum drying technique achieved better and more uniform drying patterns among the samples. Overall, the RF-vacuum drying process may provide a more effective and practical method for high-quality dehydration of kiwifruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AOAC. (2005). Official methods of analysis of AOAC international. Maryland: Gaithersburg.

    Google Scholar 

  • ASAE. (1996). Moisture relationships of plants-based agricultural products. ASAE standards D245.5 OCT95. Agricultural engineering yearbook (43th ed.pp. 452–464). St. Joseph: ASAE.

    Google Scholar 

  • Awuah, G., Koral, T., & Guan, D. (2014). Radio-frequency baking and roasting of food products. In B. A. George, H. S. Ramaswamy, & J. Tang (Eds.), Radio frequency heating in food processing: principles and applications (pp. 231–243). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Bedane, T. F., Chen, L., Marra, F., & Wang, S. (2017). Experimental study of radio frequency (RF) thawing of foods with movement on conveyor belt. Journal of Food Engineering, 201, 17–25.

    Article  Google Scholar 

  • Birla, S. L., Wang, S., Tang, J., & Tiwari, G. (2008). Characterization of radio frequency heating of fresh fruits influenced by dielectric properties. Journal of Food Engineering, 89(4), 390–398.

    Article  Google Scholar 

  • Bursal, E., & Gulcin, I. (2011). Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Research International, 44(5), 1482–1489.

    Article  CAS  Google Scholar 

  • Castro-Giraldez, M., Tylewicz, U., Fito, P. J., Dalla Rosa, M., & Fito, P. (2011). Analysis of chemical and structural changes in kiwifruit (Actinidia deliciosa cv Hayward) through the osmotic dehydration. Journal of Food Engineering, 105(4), 599–608.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press.

    Google Scholar 

  • Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Microwave-vacuum drying kinetics of carrot slices. Journal of Food Engineering, 65(2), 157–164.

    Article  Google Scholar 

  • Diamante, L., Durand, M., Savage, G., & Vanhanen, L. (2010). Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits. International Food Research Journal, 17, 441–451.

    CAS  Google Scholar 

  • Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464.

    Article  PubMed  Google Scholar 

  • Esfahani, J. A., Majdi, H., & Barati, E. (2014). Analytical two-dimensional analysis of the transport phenomena occurring during convective drying: apple slices. Journal of Food Engineering, 123, 87–93.

    Article  Google Scholar 

  • FAOSTAT. Food and Agriculture Organization of the United States (2018). http://www.fao.org/faostat/en/#data. Access date: January, 2018.

  • Fathi, M., Mohebbi, M., & Razavi, S. M. A. (2011). Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food and Bioprocess Technology, 4(8), 1357–1366.

    Article  Google Scholar 

  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470.

    Article  Google Scholar 

  • Han, Q. H., Yin, L. J., Li, S. J., Yang, B. N., & Ma, J. W. (2010). Optimization of process parameters for microwave vacuum drying of apple slices using response surface method. Drying Technology, 28(4), 523–532.

    Article  CAS  Google Scholar 

  • Hou, L., Huang, Z., Kou, X., & Wang, S. (2016). Computer simulation model development and validation of radio frequency heating for bulk chestnuts based on single particle approach. Food and Bioproducts Processing, 100, 372–381.

    Article  Google Scholar 

  • Hu, Q. G., Zhang, M., Mujumdar, A. S., Xiao, G. N., & Sun, J. C. (2006). Drying of edamames by hot air and vacuum microwave combination. Journal of Food Engineering, 77(4), 977–982.

    Article  Google Scholar 

  • Huang, S. X., Ding, J., Deng, D. J., Tang, W., Sun, H. H., Liu, D. Y., Zhang, L., Niu, X. L., Zhang, X., Meng, M., Yu, J. D., Liu, J., Han, Y., Shi, W., Zhang, D. F., Cao, S. Q., Wei, Z. J., Cui, Y. L., Xia, Y. H., Zeng, H. P., Bao, K., Lin, L., Min, Y., Zhang, H., Miao, M., Tang, X. F., Zhu, Y. Y., Sui, Y., Li, G. W., Sun, H. J., Yue, J. Y., Sun, J. Q., Liu, F. F., Zhou, L. Q., Lei, L., Zheng, X. Q., Liu, M., Huang, L., Song, J., Xu, C. H., Li, J. W., Ye, K. Y., Zhong, S. L., Lu, B. R., He, G. H., Xiao, F. M., Wang, H. L., Zheng, H. K., Fei, Z. J., & Liu, Y. S. (2013). Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 4(1), 2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Z., Zhu, H., Yan, R., & Wang, S. (2015). Simulation and prediction of radio frequency heating in dry soybeans. Biosystems Engineering, 129, 34–47.

    Article  Google Scholar 

  • Huang, J. P., Zhang, M., Adhikari, B., & Yang, Z. X. (2016). Effect of microwave air spouted drying arranged in two and three-stages on the drying uniformity and quality of dehydrated carrot cubes. Journal of Food Engineering, 177, 80–89.

    Article  CAS  Google Scholar 

  • Huang, Z., Marra, F., Subbiah, J., & Wang, S. (2018). Computer simulation for improving radio frequency (RF) heating uniformity of food products: a review. Critical Reviews in Food Science and Nutrition, 58(6), 1033–1057.

    Article  PubMed  Google Scholar 

  • Jeong, S. G., Baik, O. D., & Kang, D. H. (2017). Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds. International Journal of Food Microbiology, 254, 54–61.

    Article  PubMed  Google Scholar 

  • Jia, X. R., Zhao, J. Y., & Cai, Y. C. (2015). Radio frequency vacuum drying of timber: mathematical model and numerical analysis. Bioresources, 10(3), 5440–5459.

    Article  CAS  Google Scholar 

  • Ju, H. Y., Law, C. L., Fang, X. M., Xiao, H. W., Liu, Y. H., & Gao, Z. J. (2016). Drying kinetics and evolution of the sample's core temperature and moisture distribution of yam slices (Dioscorea alata L.) during convective hot-air drying. Drying Technology, 34(11), 1297–1306.

    Article  CAS  Google Scholar 

  • Kaya, A., Aydm, O., & Kolayli, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(C2–3), 165–173.

    Article  CAS  Google Scholar 

  • Kirmaci, B., & Singh, R. K. (2012). Quality of chicken breast meat cooked in a pilot-scale radio frequency oven. Innovative Food Science and Emerging Technologies, 14, 77–84.

    Article  Google Scholar 

  • Koumoutsakos, A., Avramidis, S., & Hatzikiriakos, S. G. (2001). Radio frequency vacuum drying of wood. II. Experimental model evaluation. Drying Technology, 19(1), 85–98.

    Article  CAS  Google Scholar 

  • Li, R., Kou, X., Cheng, T., Zheng, A., & Wang, S. (2017). Verification of radio frequency pasteurization process for in-shell almonds. Journal of Food Engineering, 192, 103–110.

    Article  Google Scholar 

  • Liu, S. X., Ozturk, S., Xu, J., Kong, F. B., Gray, P., Zhu, M. J., Sablani, S. S., & Tang, J. M. (2018). Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering, 217, 68–74.

    Article  Google Scholar 

  • Marra, F., Zhang, L., & Lyng, J. G. (2009). Radio frequency treatment of foods: review of recent advances. Journal of Food Engineering, 91(4), 497–508.

    Article  Google Scholar 

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177–182.

    Article  Google Scholar 

  • Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single-layer drying. Drying Technology, 20(7), 1503–1513.

    Article  Google Scholar 

  • Mrad, N. D., Boudhrioua, N., Kechaou, N., Courtois, F., & Bonazzi, C. (2012). Influence of air drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioproducts Processing, 90(C3), 433–441.

    Article  CAS  Google Scholar 

  • Mujumdar, A. S. (2007). Handbook of industrial drying. Philadelphia: Taylor & Francis.

    Google Scholar 

  • Orikasa, T., Koide, S., Okamoto, S., Imaizumi, T., Muramatsu, Y., Takeda, J., Shiina, T., & Tagawa, A. (2014). Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. Journal of Food Engineering, 125, 51–58.

    Article  Google Scholar 

  • Palazoglu, T. K., & Miran, W. (2018). Experimental investigation of the effect of conveyor movement and sample's vertical position on radio frequency tempering of frozen beef. Journal of Food Engineering, 219, 71–80.

    Article  Google Scholar 

  • Pu, Y. Y., & Sun, D. W. (2016). Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innovative Food Science and Emerging Technologies, 33, 348–356.

    Article  Google Scholar 

  • Pu, Y. Y., & Sun, D. W. (2017). Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosystems Engineering, 156, 108–119.

    Article  Google Scholar 

  • Ramaswamy, H., & Tang, J. (2008). Microwave and radio frequency heating. Food Science and Technology International, 14(5), 423–427.

    Article  Google Scholar 

  • Sagar, V. R., & Kumar, P. S. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 47(1), 15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Rossello, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323–328.

    Article  Google Scholar 

  • Tavarini, S., Degl'Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282–288.

    Article  CAS  Google Scholar 

  • Therdthai, N., & Zhou, W. B. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), 482–489.

    Article  Google Scholar 

  • Tian, Y., Zhang, Y., Zeng, S., Zheng, Y., Chen, F., Guo, Z., Lin, Y., & Zheng, B. (2012). Optimization of microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds by response surface methodology. Food Science and Technology International, 18(5), 477–488.

    Article  PubMed  Google Scholar 

  • Tiwari, G., Wang, S., Tang, J., & Birla, S. L. (2011). Analysis of radio frequency (RF) power distribution in dry food materials. Journal of Food Engineering, 104(4), 548–556.

    Article  Google Scholar 

  • Uyar, R., Erdogdu, F., & Marra, F. (2014). Effect of load volume on power absorption and temperature evolution during radio-frequency heating of meat cubes: a computational study. Food and Bioproducts Processing, 92(3), 243–251.

    Article  Google Scholar 

  • Vega-Galvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martinez-Monzo, J., Garcia-Segovia, P., Lemus-Mondaca, R., & Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Villa-Corrales, L., Flores-Prieto, J. J., Xaman-Villasenor, J. P., & Garcia-Hernandez, E. (2010). Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. Journal of Food Engineering, 98(2), 198–206.

    Article  Google Scholar 

  • Wang, S., Birla, S. L., Tang, J., & Hansen, J. D. (2006). Postharvest treatment to control codling moth in fresh apples using water assisted radio frequency heating. Postharvest Biology and Technology, 40(1), 89–96.

    Article  CAS  Google Scholar 

  • Wang, Y. C., Zhang, M., Mujumdar, A. S., & Mothibe, K. J. (2013). Microwave-assisted pulse-spouted bed freeze-drying of stem lettuce slices-effect on product quality. Food and Bioprocess Technology, 6(12), 3530–3543.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R., & Wang, S. (2014). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7(1), 278–288.

    Article  CAS  Google Scholar 

  • Xiao, H. W., Pang, C. L., Wang, L. H., Bai, J. W., Yang, W. X., & Gao, Z. J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2), 233–240.

    Article  Google Scholar 

  • Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science and Technology, 17(10), 524–534.

    Article  CAS  Google Scholar 

  • Zhang, M., Chen, H. Z., Mujumdar, A. S., Tang, J. M., Miao, S., & Wang, Y. C. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, A., Zhang, L., & Wang, S. (2017). Verification of radio frequency pasteurization treatment for controlling Aspergillus parasitius on corns. International Journal of Food Microbiology, 249C, 27–34.

    Article  Google Scholar 

  • Zhou, L. Y., Ling, B., Zheng, A. J., Zhang, B., & Wang, S. J. (2015). Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research, 62, 22–31.

    Article  Google Scholar 

  • Zhou, X., Gao, H., Mitcham, E. J., & Wang, S. (2018a). Comparative analyses of three dehydration methods on drying characteristics and oil quality of in-shell walnuts. Drying Technology, 36(4), 477–490.

    Article  Google Scholar 

  • Zhou, X., Li, R., Lyng, J. G., Wang, S. (2018b). Dielectric properties of kiwifruit associated with a combined radio frequency vacuum and osmotic drying. Journal of Food Engineering, 239, 72–82.

    Article  Google Scholar 

  • Zhou, X., & Wang, S. (2018). Recent developments in radio frequency drying of food and agricultural products: a review. Drying Technology, 36(16), 2030–2045. https://doi.org/10.1080/07373937.2018.1452255.

  • Zielinska, M., & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Zielinska, M., Sadowski, P., & Blaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT- Food Science and Technology, 62(1), 555–563.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted in the College of Mechanical and Electronic Engineering, Northwest A&F University. The authors thank the technical assistance from Shuming Zhang, Rui Li, Shuang Zhang, Lihui Zhang, and Biying Lin for carrying out the experiments.

Funding

This research was supported by research grants from National Key Research and Development Program of China (2017YFD0400900, 2016YFD0401000), National Natural Science Foundation in China (No. 31772031), and Key Laboratory of Post-Harvest handling of fruits, Ministry of Agriculture (GPCH201703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xu, R., Zhang, B. et al. Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food Bioprocess Technol 11, 2094–2109 (2018). https://doi.org/10.1007/s11947-018-2169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2169-3

Keywords

Navigation