Skip to main content
Log in

Cellulase Production by Aspergillus japonicus URM5620 Using Waste from Castor Bean (Ricinus communis L.) Under Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The activity of β-glucosidase (βG), total cellulase (FPase) and endoglucanase (CMCase), produced by Aspergillus japonicus URM5620, was studied on solid-state fermentation using castor bean meal as substrate. The effect of the substrate amount, initial moisture, pH, and temperature on cellulase production was studied using a full factorial design (24). The maximum βG, FPase, and CMCase activity was 88.3, 953.4, and 191.6 U/g dry substrate, respectively. The best enzyme activities for all three enzymes were obtained at the same conditions with 5.0 g of substrate, initial moisture 15% at 25 °C and pH 6.0 with 120 h of fermentation. The optimum activity for FPase and CMCase was found at pH 3.0 at an optimum temperature of 50 °C for FPase and of 55 °C for CMCase. The cellulases were stable in the range of pH 3.0–10.0 at 50 °C temperature. The enzyme production optimization demonstrated clearly the impact of the process parameters on the yield of the cellulolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Godoy, M. G., Gutarra, M. L. E., Maciel, F. M., Felix, S. P., Bevilaqua, J. V., Machado, O. L. T., et al. (2009). Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzyme and microbial technology, 44, 317–322.

    Article  CAS  Google Scholar 

  2. Audi, J., Belson, M., Patel, M., Shier, J., & Osterloh, J. (2005). Ricin poisoning – A comprehensive review. J. Am. Medical. Assoc., 294, 2342–2351.

    Article  CAS  Google Scholar 

  3. Thorpe, S. C., Kemeny, D. M., Panzani, R. C., Mcgurl, B., & Lord, M. (1988). Allergy to castor bean. II. Identification of the major allergens in castor bean-seeds. The Journal of Allergy and Clinical Immunology, 21, 67–72.

    Article  Google Scholar 

  4. Brand, D., Pandey, A., Roussos, S., & Soccol, C. R. (2000). Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme and Microbial Technology, 26, 127–133.

    Article  Google Scholar 

  5. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid state fermentation with fungi. Applied Microbiology and Biotechnology, 64, 175–186.

    Article  Google Scholar 

  6. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technol., 99, 7623–7629.

    Article  CAS  Google Scholar 

  7. Bhat, M. K., & Bhat, S. (1997). Cellulose degrading enzymes and their potential industrial application. Biotechnology Advances, 15(3), 583–620.

    Article  CAS  Google Scholar 

  8. Harhangi, H. R., Steenbakkers, P. J. M., Akhmanova, A., Jetten, M. S. M., Drift, C. V. D., Camp, O. D., et al. (2002). A highly expressed family 1 β-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica et Biophy. Acta., 1574(3), 293–303.

    CAS  Google Scholar 

  9. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  10. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67, 577–591.

    Article  CAS  Google Scholar 

  11. Klich, M. A. (2002). Identification of common Aspergillus species (1st ed.). Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  12. Spier, M. R., Greiner, R., Rodriguez-León, J. A., Woiciechowski, A. L., Pandey, A., Soccol, V. T., et al. (2008). Phytase production using citric pulp in SSF. Food Technol. Biotechnol., 46, 178–182.

    CAS  Google Scholar 

  13. Zenebon, O., & Pascuet, N. S. (2005). Métodos físico-químicos para análise de alimentos (4th ed.). São Paulo: Instituto Adolfo Lutz.

    Google Scholar 

  14. Bruns, R. E., Scarminio, I. S., & Neto, B. B. (2006). Statistical Design-Chemometrics (1st ed.). Elsevier: Amsterdam.

    Google Scholar 

  15. Statsoft (2008), Inc. STATISTICA (data analysis software systems) version 8.0.

  16. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  17. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  18. Deshpande, V., and Eriksson, K.E. 1,4-ß-glucosidases of Sporotrichum pulverulentum. In: Wood, W.A.; Kellogg, S.T. (Ed.). (1988), Methods in Enzymology. San Diego: Academic Press, 160: 415–424.

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Herculano, P. N., Lima, D. M. M., Fernandes, M. J. S., Neves, R. P., Souza-Motta, C. M., & Porto, A. L. F. (2011). Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Current Microbiology, 62, 1416–1422.

    Article  CAS  Google Scholar 

  21. Laufenberg, G., Rosato, P., & Kunz, B. (2004). Adding value to vege table waste: oil press cakes as substrates for microbial decalactone production. Eur. J. Lipid Sci. Technol., 106, 207–217.

    Article  CAS  Google Scholar 

  22. Hui, L., Wan, C., Hai-Tao, D., Xue-Jiao, C., Qi-Fa, Z., & Yu-Hua, Z. (2010). Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresource Technol., 101, 7556–7562.

    Article  Google Scholar 

  23. Nazir, A. S., Saini, R. H. S., Kaur, A., & Chadha, B. S. (2010). Profiling Differential Expression of Cellulases and Metabolite Footprints in Aspergillus terreus. Applied Biochemistry and Biotechnology, 162, 538–547.

    Article  CAS  Google Scholar 

  24. Xin, F., & Geng, A. (2010). Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation. Applied Biochemistry and Biotechnology, 162, 295–306.

    Article  CAS  Google Scholar 

  25. Gottschalk, L. M. F., Oliveira, R. A., & Bon, E. P. S. (2010). Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochemical Engineering Journal, 51, 72–78.

    Article  CAS  Google Scholar 

  26. Dogaris, I., Vakontios, G., Kalogeris, E., Mamma, D., & Kekos, D. (2009). Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial Crops and Products, 29, 404–411.

    Article  CAS  Google Scholar 

  27. Mamma, D., Kourtoglou, E., & Christakopoulos, P. (2008). Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresource Technology, 99, 2373–2383.

    Article  CAS  Google Scholar 

  28. Botella, C., Diaz, A., Ory, I., Webb, C., & Blandino, A. (2007). Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochemistry, 42, 98–101.

    Article  CAS  Google Scholar 

  29. Christen, P., Bramorski, A., Revaha, S., & Soccol, C. R. (2000). Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresource Technology, 71, 211–215.

    Article  CAS  Google Scholar 

  30. Alam, M. Z., Muyibi, S. A., & Wahid, R. (2008). Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technology, 99, 4709–4716.

    Article  CAS  Google Scholar 

  31. Prasetyo, J., Sumita, S., Okuda, N., Park, E. Y., & Park, E. Y. (2010). Response of Cellulase Activity in pH-Controlled Cultures of the Filamentous Fungus Acremonium cellulolyticus. Applied Biochemistry and Biotechnology, 162, 52–61.

    Article  CAS  Google Scholar 

  32. Dutta, T., Sahoo, R., Sengupta, R., Ray, S. S., Bhattacharjee, A., & Ghosh, S. (2008). Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J. Ind. Microb. Biotechnol., 35, 275–282.

    Article  CAS  Google Scholar 

  33. Gowthaman, M. K., Krishna, C., & Moo-Young, M. (2001). Fungal solid state fermentation – an revision. Appl. Mycol. Biotechnol., 1, 305–352.

    Article  CAS  Google Scholar 

  34. Krishna, C. (2005). Solid-State Fermentation Systems – An Overview. Critical Rev. Biotechnol., 25, 1–30.

    Article  CAS  Google Scholar 

  35. Picart, P., Diaz, P., & Pastor, F. I. J. (2007). Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Letters in Applied Microbiology, 45, 108–113.

    Article  CAS  Google Scholar 

  36. Sreenath, H. K., Yang, V. W., Burdsall, H. H., Jeffries, T. W. (1996). Toner removal by alkaline-active cellulases from desert Basidiomycetes. In: Jeffries T.W., Viikari, L. (Eds.), The enzymes for pulp and paper processing. Washington: American Chemical Society, 267–279.

Download references

Acknowledgments

The authors acknowledge FINEP ref. 2083/07—RENNEBRA/CNPq process no. 552410/2005-5, RENORBIO/MCT/CNPq process no. 554740/2006-0, and CAPES for providing financial support to this research work. The authors also gratefully acknowledge the Nogueira, E.B.S. and the Micoteca URM, of the Mycology Department at UFPE, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lúcia F. Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herculano, P.N., Porto, T.S., Moreira, K.A. et al. Cellulase Production by Aspergillus japonicus URM5620 Using Waste from Castor Bean (Ricinus communis L.) Under Solid-State Fermentation. Appl Biochem Biotechnol 165, 1057–1067 (2011). https://doi.org/10.1007/s12010-011-9321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9321-0

Keywords

Navigation