Skip to main content
Log in

Identification and Functional Characterization of Two Novel Fatty Acid Genes from Marine Microalgae for Eicosapentaenoic Acid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Marine microalgae such as Isochrysis sp. and Pavlova sp. are the predominant source of polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA, 20:5n–3) and docosahexaenoic acid (DHA, 22:6n–3). EPA biosynthesis pathway is predominant in lower eukaryotes, and its biosynthetic gene expressions are not well established. Till date, the C18 elongation enzymes for EPA biosynthesis have not been identified from lower eukaryote. In the present study, we describe the identification of two microalgal genes Δ6-elongase and Δ5-desaturase involved for EPA biosynthesis. By PCR-based technique, a novel elongase gene (Δ6Elo-Iso) was isolated from Isochrysis sp., and 654 bp of full-length sequence was identified, which catalysed the conversion of SDA into ETr in E. coli. The identified gene displayed unique substrate specificity for both n-3 and n-6 C18-substrates for Δ6-elongation, with no activity towards Δ9-elongase. In addition, a novel Δ5-desaturase gene (Δ5Des-Pav) was isolated from Pavlova sp. and found an ORF of 1149 bp in length, which was capable of converting ETr into EPA in omega-3 pathway. For the first time, the heterologous expressions of two novel microalgal genes were successfully expressed in Escherichia coli. EPA production from E. coli is being considered as an alternative and economic source for industrial and pharmaceutical sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  2. Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration & Biodegradation, 85, 506–510.

    Article  CAS  Google Scholar 

  3. Kinsella, J. E., Lokesh, B., Broughton, S., & Whelan, J. (1990). Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of inflammatory and immune cells: an overview. Nutrition, 6, 24–44.

    CAS  PubMed  Google Scholar 

  4. Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96(1-4), 27–36.

    Article  CAS  Google Scholar 

  5. Lee, J. M., Lee, H., Kang, S., & Park, W. J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients, 8, 23.

    Article  Google Scholar 

  6. Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The lipids. Fish Nutrition, 3, 181–257.

    Google Scholar 

  7. Patil, V., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15, 1–9.

    Article  CAS  Google Scholar 

  8. Guihéneuf, F., Ulmann, L., Mimouni, V., & Tremblin, G. (2013). Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri. Phytochemistry, 90, 43–49.

    Article  Google Scholar 

  9. Mohy El-Din, S. (2019). Accumulation of lipids and triglycerides in Isochrysis galbana under nutrient stress. Applied Biochemistry and Biotechnology, 189(2), 359–373. https://doi.org/10.1007/s12010-019-02997-0.

    Article  CAS  PubMed  Google Scholar 

  10. Thiyagarajan, S., Arumugam, M., Senthil, N., Vellaikumar, S., & Kathiresan, S. (2018). Functional characterization and substrate specificity analysis of Δ6-desaturase from marine microalga Isochrysis sp. Biotechnology Letters, 40(3), 577–584.

    Article  CAS  Google Scholar 

  11. Jiang, M., Guo, B., Wan, X., Gong, Y., Zhang, Y., & Hu, C. (2014). Isolation and characterization of the diatom Phaeodactylum Δ5-elongase gene for transgenic LC-PUFA production in Pichia pastoris. Marine Drugs, 12(3), 1317–1334.

    Article  Google Scholar 

  12. Huang, J. Z., Jiang, X. Z., Xia, X. F., Yu, A. Q., Mao, R. Y., Chen, X. F., & Tian, B. Y. (2010). Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′-upstream region from marine fungus Thraustochytrium sp. FJN-10. Marine Biotechnology, 13, 12–21.

    Article  Google Scholar 

  13. Kaewsuwan, S., Cahoon, E. B., Perroud, P. F., Wiwat, C., Panvisavas, N., Quatrano, R. S., Cove, D. J., & Bunyapraphatsara, N. (2006). Identification and functional characterization of the moss Physcomitrella patens delta(5)-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. The Journal of Biological Chemistry, 281(31), 21988–21997.

    Article  CAS  Google Scholar 

  14. Li, L., Wang, X., Gai, J., & Yu, D. (2007). Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. Journal of Plant Physiology, 164, 1516–1526.

    Article  CAS  Google Scholar 

  15. Park, W. J., Kothapalli, K. S., Lawrence, P., Tyburczy, C., & Brenna, J. T. (2009). An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Δ8-desaturates 20:2n-6 and 20:3n-3. Journal of Lipid Research, 50(6), 1195–1202.

    Article  CAS  Google Scholar 

  16. Walne, P. R. (1970). Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria, and Mytilus. Fishery Investigations, 26, 1–62.

    Google Scholar 

  17. Christie, W. W. (1982). Lipid analysis (2nd ed.). New York: Pergamon Press.

    Google Scholar 

  18. Petrie, J. R., Liu, Q., Mackenzie, A. M., Shrestha, P., Mansour, M. P., Robert, S. S., Frampton, D. F., Blackburn, S. I., Nichols, P. D., & Singh, S. P. (2010). Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Marine Biotechnology, 12(4), 430–438.

    Article  CAS  Google Scholar 

  19. Yu, S. Y., Li, H., Tong, H., Ouyang, L. L., & Zhou, Z. G. (2012). Identification of a Δ6 fatty acid elongase gene for arachidonic acid biosynthesis localized to the endoplasmic reticulum in the green microalga Myrmecia incisa Reisigl. Gene, 493, 219–227.

    Article  CAS  Google Scholar 

  20. Eiamsa-ard, P., Kanjana-Opas, A., Cahoon, E. B., Chodok, P., & Kaewsuwan, S. (2013). Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Applied Microbiology and Biotechnology, 97(8), 3485–3497.

    Article  CAS  Google Scholar 

  21. Jeennor, S., Cheawchanlertfa, P., Suttiwattanakul, S., Panchanawaporn, S., Chutrakul, C., & Laoteng, K. (2014). Novel elongase of Pythium sp. with high specificity on D6-18C desaturated fatty acids. Biochemical and Biophysical Research Communications, 450, 507–512.

    Article  CAS  Google Scholar 

  22. Qi, B., Fraser, T., Mugford, S., et al. (2004). Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nature Biotechnology, 22, 739–745. https://doi.org/10.1038/nbt972.

    Article  CAS  PubMed  Google Scholar 

  23. Parker-Barnes, J. M., Das, T., Bobik, E., Leonard, A. E., Thurmond, J. M., Chaung, L. T., Huang, Y. S., & Mukerji, P. (2000). Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 97, 8284–8289.

    Article  CAS  Google Scholar 

  24. Leonard, A. E., Pereira, S. L., Sprecher, H., & Huang, Y. S. (2004). Elongation of long-chain fatty acid. Progress in Lipid Research, 43(1), 36–54.

    Article  CAS  Google Scholar 

  25. Meyer, A., Kirsch, H., Domergue, F., Abbadi, A., Sperling, P., Bauer, J., Cirpus, P., Zank, T. K., Moreau, H., Roscoe, T. J., Zähringer, U., & Heinz, E. (2004). Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. Journal of Lipid Research, 45(10), 1899–1909.

    Article  CAS  Google Scholar 

  26. Kajikawa, M., Matsui, K., Ochiai, M., et al. (2008). Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes. Bioscience, Biotechnology, and Biochemistry, 72, 435–444.

    Article  CAS  Google Scholar 

  27. Hashimoto, K., Yoshizawa, A. C., Okuda, S., Kuma, K., Goto, S., & Kanehisa, M. (2008). The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. Journal of Lipid Research, 49(1), 183–191.

    Article  CAS  Google Scholar 

  28. Domergue, F., Lerchl, J., Zähringer, U., & Heinz, E. (2002). Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. European Journal of Biochemistry, 269(16), 4105–4113.

    Article  CAS  Google Scholar 

  29. Knutzon, D. S., Thurmond, J. M., Huang, Y. S., Chaudhary, S., Bobik Jr., E. G., Chan, G. M., Kirchner, S. J., & Mukerji, P. (1998). Identification of Delta5-desaturase from Mortierella alpina by heterologous expression in Bakers' yeast and canola. Journal of Biological Chemistry, 273(45), 29360–29366.

    Article  CAS  Google Scholar 

  30. Hoffmann, M., Wagner, M., Abbadi, A., Fulda, M., & Feussner, I. (2008). Metabolic engineering of ω3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. Journal of Biological Chemistry, 283(33), 22352–22362.

    Article  CAS  Google Scholar 

  31. Lu, Y., Chi, X., Yang, Q., Li, Z., Liu, S., Gan, Q., & Qin, S. (2009). Molecular cloning and stress-dependent expression of a gene encoding D12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles, 13(6), 875–884.

    Article  CAS  Google Scholar 

  32. Liang, Y., Mai, K. S., & Sun, S. C. (2003). Effect of NaNO3 concentrations on the growth and fatty acid compositions of Nitzschia closterium and Chaetoceros gracilis. Bulletin of Marine Science, 5, 69–74.

    Google Scholar 

  33. Catalina Adarme-Vega, T., Thomas-Hall, S. R., Lim, D. K. Y., & Schenk, P. M. (2004). Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Marine Drugs, 12, 3381–3398.

    Article  Google Scholar 

  34. Yodsuwan, N., Sawayama, S., & Sirisansaneeyakul, S. (2017). Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agriculture & Natural Resources, 51, 190–197.

    Article  Google Scholar 

  35. Hamilton, M. L., Haslam, R. P., Napier, J. A., & Sayanova, O. (2014). Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabolic Engineering, 22, 3–9.

    Article  CAS  Google Scholar 

  36. Zeng, S. Y., Liu, H. H., Shi, T. Q., Song, P., Ren, L. J., Huang, H., & Ji, X. J. (2018). Recent advances in metabolic engineering of Yarrowia lipolytica for lipid overproduction. European Journal of Lipid Science and Technology, 120, 1700352.

    Article  Google Scholar 

  37. Amiri-Jami, M., Abdelhamid, A. G., Hazaa, M., Kakuda, Y., & Griffths, M. W. (2015). Recombinant production of omega-3 fatty acids by probiotic Escherichia coli Nissle 1917. FEMS Microbiology Letters, 362, fnv166.

    Article  Google Scholar 

  38. Cahoon, E. B., Mills, L. B., & Shanklin, J. (1996). Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. Journal of Bacteriology, 178(3), 936–939.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Science and Engineering Research Board (SERB), Government of India (ECR/2017/002914, SB/EMEQ-219/2014). The authors thank DBT-IPLS, NRCBS, CEGS, DST-PURSE, UGC-CAS Phase III, School of Biological Sciences, and Madurai Kamaraj University, Tamil Nadu, India, for the instrumentation facilities and the supports provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathiresan S.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Cloning and expression of Δ6-elongase gene from Isochrysis sp. and the PCR amplification were found at 0.65 kb in size (a), TA cloning of Δ6Elo-Iso in pXCM vector was confirmed by BamH1 restriction digestion (b), and colony PCR (c) showed gene of interest at 0.65 kb. For gene expression, Δ6Elo-Iso cloned into pGEX-4T2, and recombinant clone was confirmed by BamH1/EcoR1 restriction digestion (d) and colony PCR (e) respectively (JPG 50 kb)

Fig. S2

Phylogenetic tree analysis of Δ6-elongase and Δ5-desaturase gene from microalgae Isochrysis sp. and Pavlova sp. The tree was constructed by Mega 6.1 and neighbour-joining method with the other available elongases and desaturases sequences from different organisms. The identified genes of Δ6Elo-Iso from Isochrysis sp. (a) and Δ5Des-Pav from Pavlova sp. (b) are represented as * (JPG 62 kb)

Fig. S3

Protein expression analysis of Δ6Elo-Iso in E. coli and the overexpressed protein were found at 50 kDa in size (Lane 2, 3) than wild type pGEX-4T2 (Lane 1) (JPG 33 kb)

Fig. S4

Cloning and expression of Δ5-desaturase gene from Pavlova sp. and the PCR amplification were found at 1.2 kb in size (a), TA cloning in pGEMT-easy vector was confirmed by EcoR1 restriction digestion (b), and colony PCR (c) showed gene of interest at 1.2 kb. For gene expression, Δ5Des-Pav cloned into pGEX-4T2, and recombinant clone was confirmed by EcoR1/Sal1 restriction digestion (d) and colony PCR (e) respectively (JPG 72 kb)

Fig. S5

Protein 3D homology model for Δ5Des-Pav was developed by Phyre tool. (a) The 3D view for human strearoyl coA-desaturase2 has shared 99.9% confidence, and (b) 3D view for cytochrome b5 has shared 99.7% confidence to the newly identified Δ5Des-Pav (JPG 64 kb)

Fig. S6

Protein expression analysis of Δ5Des-Pav in E. coli and the overexpressed protein were found at 70 kDa in size (Lane 4–6) than wild type pGEX-4T2 (Lane 1) (JPG 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajan S, Arumugam M & Kathiresan S Identification and Functional Characterization of Two Novel Fatty Acid Genes from Marine Microalgae for Eicosapentaenoic Acid Production. Appl Biochem Biotechnol 190, 1371–1384 (2020). https://doi.org/10.1007/s12010-019-03176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03176-x

Keywords

Navigation