Skip to main content
Log in

Bioaccumulation of Trace Elements in Trophic Levels of Wetland Plants and Waterfowl Birds

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Present study investigates relationships between total and bioaccessibility of trace elements (Cd, Co, Cr, Cu, Mn, NI, Pb, V, and Zn) concentrations in sediment and their bioaccumulation in species in Shadegan wetland in southwest of Iran. Bioavailability factor (BAF) and translocation factor (TF) were calculated in plants and trophic transfer factor (TTF) was determined in bird species. For this purpose, sampling of sediments, aquatic plants including Phragmites australis, Typha australis, Scripus maritimus and two bird species encircling Porphyrio porphyrio and globally threatened Marmaronetta angustirostris were carried out during winter 2009. Result of chemical analysis show that bioaccessibility concentrations of Mn (8.31 mg/kg), V (1.33 mg/kg), and Pb (1.03 mg/kg) are higher than other metals. The uptake trend of trace elements in plant decreases as root > stem > leaf. Accumulation levels of trace elements in different tissues of P. porphyrio and M. angustirostris are almost identical and considerable. Accumulation and toxicity of Cd in birds is more than plants. In addition, BAF of V, Pb, and Cr indicates high accumulation by plants and great pollution rate in the area of study. In S. maritimus TF for Mn, Cu, Pb, and V are high whereas in T. australis, Cu and Pb posses the highest TF. Also Cr, Co, Mn, Ni, and Zn have higher TF from stem to leaf than root to stem in P. australis. Finally, TTFs were compared in various bird species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fairbrother A, Wenstel R, Sappington S, Wood W (2007) Framework for metals risk assessment. Ecotox Environ Safe 68:145–227

    Article  CAS  Google Scholar 

  2. Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper-contaminated soil. Chemosphere 62:602–607

    Article  PubMed  CAS  Google Scholar 

  3. Ahmad MK, Islam S, Rahman S, Haque MR, Islam MM (2010) Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int J Environ Res 4(2):321–332

    CAS  Google Scholar 

  4. Burger J, Gochfeld M, Sullivan K, Irons D (2007) Mercury, arsenic, cadmium, chromium lead, and selenium in feathers of pigeon guillemots (Cepphus columba) from Prince William Sound and the Aleutian Islands of Alaska. Sci Total Environ 387:175–184

    Article  PubMed  CAS  Google Scholar 

  5. Li F, Wen YM, Zhu PT (2008) Bioavailability and toxicity of heavy metals in a heavily polluted river, in PRD, China. Bull Environ Contam Toxicol 81:90–94

    Article  PubMed  CAS  Google Scholar 

  6. Mensi GhS, Moukha S, Creppy EE, Maaroufi K (2008) Metals accumulation in marine bivalves and seawater from the lagoon of Boughrara in Tunisia (North Africa). Int J Environ Res 2(3):279–284

    CAS  Google Scholar 

  7. Murugesan AG, Maheswari S, Bagirath G (2008) Biosorption of cadmium by live and immobilized cells of Spirulina platensis. Int J Environ Res 2(3):307–312

    CAS  Google Scholar 

  8. Sekhavatjou MS, Rostami A, Hoseini Alhashemi A (2010) Assessment of elemental concentrations in the urban air (case study: Tehran city). Environ Monit Assess 163:467–476

    Article  PubMed  CAS  Google Scholar 

  9. Uba S, Uzairu A, Okunola OJ (2009) Content of heavy metals in lumbricus terrestris and associated soils in dump sites. Int J Environ Res 3(3):353–358

    CAS  Google Scholar 

  10. Karbassi AR, Nouri J, Ayaz GO (2007) Flocculation of Cu, Zn, Pb and Ni during mixing of Talar river water with the Caspian seawater. Int J Environ Res 1(1):66–73

    CAS  Google Scholar 

  11. Mazeja Z, Germb M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647

    Article  Google Scholar 

  12. Muchaa AP, Almeida CMR, Bordalo AA, Vasconcelos MTSD (2008) Salt marsh plants (Juncus maritimus and Scirpus maritimus) as sources of strong complexing ligands. Estuarine Coast Shelf Sci 77:104–112

    Article  Google Scholar 

  13. Priju CP, Narayana AC (2007) Heavy and trace metals in Vembanad Lake sediments. Int J Environ Res 1(4):280–289

    CAS  Google Scholar 

  14. Venugopal T, Giridharan L, Jayaprakash M (2009) Characterization and risk assessment studies of bed sediments of River Adyar—an application of speciation study. Int J Environ Res 3(4):581–598

    CAS  Google Scholar 

  15. Von der Heyden CJ, New MG (2004) Sediment chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential. J Geochem Explor 82:35–57

    Article  Google Scholar 

  16. Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, Virzo De Santo A (2004) Assessment of macro and microelement accumulation capability of two aquatic plants. Environ Pollut 130:149–156

    Article  PubMed  CAS  Google Scholar 

  17. Karpiscak MM, Whiteaker LR, Artiola JF, Foster KE (2001) Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Sci Technol 44:455–462

    PubMed  CAS  Google Scholar 

  18. Kovacs M, Nyary L, Toth L (1984) The microelement content of some submerged and floating aquatic plants. Acta Bot 30:173–185

    CAS  Google Scholar 

  19. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  20. Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  PubMed  CAS  Google Scholar 

  21. Kashulin NA, Terentiev PM, Koroleva IM (2008) The status of whitefish population from Chuna Lake in the Lapland Biosphere Reserve Russia. Int J Environ Res 2(2):111–124

    CAS  Google Scholar 

  22. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. In: Clesceri LS, Greenberg AE, Eaton AD (eds) 20th ed. APHA, Washington DC

    Google Scholar 

  23. Aksoy A, Demirezen D, Duman F (2005) Bioaccumulation, detection and analysis of heavy metal pollution in sultan marsh and its environment. Water Air Soil Pollut 164:241–255

    Article  CAS  Google Scholar 

  24. Mohan BS, Hosetti BB (1999) Aquatic plants for toxicity assessment. Environ Res Sec A 81:259–274

    Article  CAS  Google Scholar 

  25. Burke DJ, Weis JS, Weis P (2000) Release of metals by the leaves of salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51:153–159

    Article  CAS  Google Scholar 

  26. Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  PubMed  CAS  Google Scholar 

  27. Demirezen D, Aksoy A (2006) Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol Ind 6:388–393

    Article  CAS  Google Scholar 

  28. Hernandez LM, Gomara B, Fernandez M, Jimenez B, Gonzalez MJ, Baos R, Hiraldo F, Ferrer M, Benito V, Suner MA, Devesa V, Munoz O, Montoro R (1999) Accumulation of heavy metals and As in wetland birds in the area around Donana National Park affected by the Aznalcollar toxic spill. Sci Total Environ 242:293–308

    Article  PubMed  CAS  Google Scholar 

  29. Adamus PR, Brandt K (1990) Impacts on quality of inland wetlands of the United States: a survey of indicators, techniques and applications of community level biomonitoring data. US Environmental Protection Agency

  30. Rothschild RFN, Duffy LK (2005) Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl. Sci Total Environ 349:277–283

    Article  PubMed  CAS  Google Scholar 

  31. Mateo R, Green AJ, Lefranc H, Baos R, Figuerola J (2007) Lead poisoning in wild birds from southern Spain: a comparative study of wetland areas and species affected, and trends over time. Ecotoxicol Environ Saf 66:119–126

    Article  PubMed  CAS  Google Scholar 

  32. Froneman A, Mangnall MJ, Little RM, Crowe TM (2001) Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape: South Africa. Biodivers Conserv 10:251–270

    Article  Google Scholar 

  33. Sánchez-Zapata JA, Anadón JD, Carrete M, Giménez A, Navarro J, Villacorta C, Botella F (2005) Breeding waterbirds in relation to artificial pond attributes: implications for the design of irrigation facilities. Biodivers Conserv 14:1627–1639

    Article  Google Scholar 

  34. Dural M, Goksu MZL, Ozak AA, Derici B (2006) Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax, Sparus aurata and Mugil cephalus from the Amlik lagoon of the eastern cost of Mediterranean (Turkey). Environ Monit Assess 118:65–74

    Article  PubMed  CAS  Google Scholar 

  35. Eeva T, Belskii E, Kuranov B (2006) Environmental pollution affects genetic diversity in wild bird populations. Mutat Res 608:8–15

    PubMed  CAS  Google Scholar 

  36. Kojadinovic J, Bustamante P, Le Corre M, Cosson RP (2007) Trace elements in three marine birds breeding on Reunion Island (Western Indian Ocean): part 2-factors influencing their detoxification. Arch Environ Contam Toxicol 52:431–440

    Article  PubMed  CAS  Google Scholar 

  37. Malik RN, Zeb N (2009) Assessment of environmental contamination using feathers of Bubulcus ibis L., as a biomonitor of heavy metal pollution, Pakistan. Ecotoxicology 18:522–536

    Article  PubMed  CAS  Google Scholar 

  38. Nouri J, Mirbagheri SA, Farrokhian F, Jaafarzadeh N, Alesheikh AA (2009) Water quality variability and eutrophic state in wet and dry years in wetland of semiarid and arid regions. Environ Earth Sci 59:1397–1407

    Article  Google Scholar 

  39. Alderton D (2005) Birds of the world. Hermes House, London

    Google Scholar 

  40. Pacheco C, McGregor PK (2007) Conservation of the purple gallinule (Porphyrio porphyrio L.) in Portugal: causes of decline, recovery and expansion. Biol Conserv 119:115–120

    Article  Google Scholar 

  41. Zamani-Ahmadmahmoodi R, Esmaili-Sari A, Ghasempouri SM, Savabieasfahani M (2009) Mercury in wetland birds of Iran and Iraq: contrasting resident Moorhen, Gallinula chloropus, and migratory common teal, Anas crecca, life strategies. Bull Environ Contam Toxicol 82:450–453

    Article  PubMed  CAS  Google Scholar 

  42. Zolfaghari Gh, Esmaili-Sari A, Ghasempouri SM, Rajabi Baydokhti R, Hassanzade Kiabi B (2009) A multispecies-monitoring study about bioaccumulation of mercury in Iranian birds (Khuzestan to Persian Gulf): effect of taxonomic affiliation and trophic level. Environ Res 109:830–836

    Article  PubMed  CAS  Google Scholar 

  43. Chester R, Hughes RM (1967) A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediment. Chem Geol 2:249–262

    Article  CAS  Google Scholar 

  44. Environmental Protection Agency (1996) Method 3050B “Acid digestion of sediments, sludges, and soils” EPA revision 2:3050B3–3050B5

  45. Gibbs RJ (1973) Mechanism of trace metal transport in rivers. Science 180:71–73

    Article  PubMed  CAS  Google Scholar 

  46. Tessier A, Campell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of partition of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  47. Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696

    Article  PubMed  CAS  Google Scholar 

  48. Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2004) Relationships between metal concentrations in great tit nestlings and their environment and food. Environ Pollut 131:373–380

    Article  PubMed  CAS  Google Scholar 

  49. Kim J, Shin J, Koo T (2009) Heavy metal distribution in some wild birds from Korea. Arch Environ Contam Toxicol 56:317–324

    Article  PubMed  CAS  Google Scholar 

  50. Hendozko E, Szefer P, Warzocha J (2010) Heavy metals in Macoma balthica and extractable metals in sediments from the southern Baltic Sea. Ecotoxicol Environ Saf 73:152–163

    Article  PubMed  CAS  Google Scholar 

  51. Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  PubMed  CAS  Google Scholar 

  52. DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246

    Article  PubMed  CAS  Google Scholar 

  53. Lok AFSL, Subaraj R (2008) Porphyrio porphyrio viridis begbie, 1834 (purple swamphen), gem of Singapore’s marshes. Nature in Singapore 1:219–224

    Google Scholar 

  54. Fuentes C, Sanchez MI, Selva N, Green AJ (2004) The diet of the marbled teal Marmaronetta angustriostris in Southern Alicante, Eastern Spain. Rev Ecol 59:475–490

    Google Scholar 

  55. Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  PubMed  CAS  Google Scholar 

  56. Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159:265–271

    Article  CAS  Google Scholar 

  57. Ali NA, Bernal MP, Ater M (2004) Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquat Bot 80:163–176

    Article  Google Scholar 

  58. Bragato C, Schiavon M, Polese R, Ertani A, Pittarello M, Malagoli M (2009) Seasonal variations of Cu, Zn, Ni and Cr concentration in Phragmites australis (Cav.) Trin ex steudel in a constructed wetland of North Italy. Desalination 246:35–44

    Article  CAS  Google Scholar 

  59. Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55:404–414

    Article  PubMed  CAS  Google Scholar 

  60. Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes former open cut brown coal mines differing in stage of acidification. Sci Total Environ 281:87–98

    Article  PubMed  CAS  Google Scholar 

  61. Ye ZH, Baker AJM, Wong MH, Willis AJ (2004) Copper tolerance, uptake and accumulation by Phragmites australis. Chemosphere 56(7):685–696

    Article  Google Scholar 

  62. Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74

    Article  Google Scholar 

  63. Keller BM, Lajtha K, Cristofor S (2009) Trace metal concentrations in the sediments and plants of the Danube Delta, Romania. Wetlands 18:42–50

    Article  Google Scholar 

  64. Hall WS, Pulliam GW (1995) An assessment of metals in an eustuarine wetland ecosystem. Arch Environ Contam Toxicol 29:164–173

    Article  CAS  Google Scholar 

  65. Wenshan H, Jianjian L (2001) Distribution of Cd and Pb in a wetland ecosystem. Sci China 44:178–184

    Article  Google Scholar 

  66. Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre MC, García-De La Cruz RF (2007) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Watr Air Soil Pollut 188:297–309

    Article  Google Scholar 

  67. Jian-Guo L, Guang-Hui L, Wan-Chen S, Jia-Kuan X, De-Ke W (2010) Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species. Pedosphere 20(1):96–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Sadat Hosseini Alhashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini Alhashemi, A.S., Karbassi, A.R., Hassanzadeh Kiabi, B. et al. Bioaccumulation of Trace Elements in Trophic Levels of Wetland Plants and Waterfowl Birds. Biol Trace Elem Res 142, 500–516 (2011). https://doi.org/10.1007/s12011-010-8795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8795-x

Keywords

Navigation