Skip to main content

Advertisement

Log in

Alzheimer’s Disease Amyloid β-Protein and Synaptic Function

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid β-protein (Aβ) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble Aβ disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synapic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble Aβ that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of Aβ have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble Aβ, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of Aβ and that targeting muscarinic receptors can indirectly modulate Aβ’s actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott, J. J., Howlett, D. R., Francis, P. T., & Williams, R. J. (2008). Abeta(1–42) modulation of Akt phosphorylation via alpha7 nAChR and NMDA receptors. Neurobiology of Aging, 29, 992–1001.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque, E. X., Alkondon, M., Pereira, E. F., et al. (1997). Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. Journal of Pharmacology and Experimental Therapeutics, 280, 1117–1136.

    PubMed  CAS  Google Scholar 

  • Almeida, C. G., Tampellini, D., Takahashi, R. H., et al. (2005). Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiology of Diseases, 20, 187–198.

    Article  CAS  Google Scholar 

  • Anwyl, R. (1999). Metabotropic glutamate receptors: Electrophysiological properties and role in plasticity. Brain Research. Brain Research Reviews, 29, 83–120.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. Acta Neuropathologica, 118, 167–179.

    Article  PubMed  Google Scholar 

  • Arias, C., Arrieta, I., & Tapia, R. (1995). Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. Journal of Neuroscience Research, 41, 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to beta-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68, 209–245.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, A., & Levin, E. D. (2000). Ventral hippocampal alpha4beta2 nicotinic receptors and chronic nicotine effects on memory. Neuropharmacology, 39, 2770–2778.

    Article  PubMed  CAS  Google Scholar 

  • Barghorn, S., Nimmrich, V., Striebinger, A., et al. (2005). Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. Journal of Neurochemistry, 95, 834–847.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, G. M., & Robinson, S. R. (2004). Physiological roles of amyloid-beta and implications for its removal in Alzheimer’s disease. Drugs and Aging, 21, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Biton, B., Bergis, O. E., Galli, F., et al. (2007). SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (1) Binding and functional profile. Neuropsychopharmacology, 32, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn, J. K., & Berse, B. (2000). The cholinergic neuronal phenotype in Alzheimer’s disease. Metabolic Brain Disease, 15, 45–64.

    PubMed  CAS  Google Scholar 

  • Bobich, J. A., Zheng, Q., & Campbell, A. (2004). Incubation of nerve endings with a physiological concentration of Abeta1-42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. Journal of Alzheimer’s Disease, 6, 243–255.

    PubMed  CAS  Google Scholar 

  • Bodick, N. C., Offen, W. W., Levey, A. I., et al. (1997). Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Archives of Neurology, 54, 465–473.

    PubMed  CAS  Google Scholar 

  • Bourin, M., Ripoll, N., & Dailly, E. (2003). Nicotinic receptors and Alzheimer’s disease. Current Medical Research and Opinion, 19, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Busche, M. A., Eichhoff, G., Adelsberger, H., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.

    Article  PubMed  CAS  Google Scholar 

  • Bymaster, F. P., Shannon, H. E., Rasmussen, K., et al. (1998). Unexpected antipsychotic-like activity with the muscarinic receptor ligand (5R, 6R)6-(3-propylthio-1, 2, 5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane. European Journal of Pharmacology, 356, 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Cacucci, F., Yi, M., Wills, T. J., Chapman, P., & O’Keefe, J. (2008). Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proceedings of the National Academy of Sciences of the United States of America, 105, 7863–7868.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q. S., Wei, W. Z., Shimahara, T., & Xie, C. W. (2002). Alzheimer amyloid beta-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiology of Learning and Memory, 77, 354–371.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Yamada, K., Nabeshima, T., & Sokabe, M. (2006). Alpha7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology, 50, 254–268.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Yin, W. J., Zhang, J. F., & Qi, J. S. (2009). Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse, 63, 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Chin, J. H., Ma, L., MacTavish, D., & Jhamandas, J. H. (2007). Amyloid beta protein modulates glutamate-mediated neurotransmission in the rat basal forebrain: Involvement of presynaptic neuronal nicotinic acetylcholine and metabotropic glutamate receptors. Journal of Neuroscience, 27, 9262–9269.

    Article  PubMed  CAS  Google Scholar 

  • Chishti, M. A., Yang, D. S., Janus, C., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. Journal of Biological Chemistry, 276, 21562–21570.

    Article  PubMed  CAS  Google Scholar 

  • Ciccotosto, G. D., Tew, D. J., Drew, S. C., et al. (2009). Stereospecific interactions are necessary for Alzheimer disease amyloid-beta toxicity. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2009.02.018.

  • Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nature Neuroscience, 8, 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Coan, E. J., Irving, A. J., & Collingridge, G. L. (1989). Low-frequency activation of the NMDA receptor system can prevent the induction of LTP. Neuroscience Letters, 105, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., & Perry, E. (2001). Nicotinic receptor abnormalities in Alzheimer’s disease. Biological Psychiatry, 49, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Cowburn, R. F., Wiehager, B., Trief, E., Li-Li, M., & Sundstrom, E. (1997). Effects of beta-amyloid-(25-35) peptides on radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: Evidence for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochemical Research, 22, 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, W. K., Wu, J., Anwyl, R., & Rowan, M. J. (1996). Beta-amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. NeuroReport, 8, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, W. K., Suh, Y. H., Anwyl, R., & Rowan, M. J. (1997). Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments. NeuroReport, 8, 3213–3217.

    PubMed  CAS  Google Scholar 

  • Dawson, G. R., Seabrook, G. R., Zheng, H., et al. (1999). Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience, 90, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • De Felice, F. G., Velasco, P. T., Lambert, M. P., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. Journal of Biological Chemistry, 282, 11590–11601.

    Article  PubMed  CAS  Google Scholar 

  • Deshpande, A., Kawai, H., Metherate, R., Glabe, C. G., & Busciglio, J. (2009). A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. Journal of Neuroscience, 29, 4004–4015.

    Article  PubMed  CAS  Google Scholar 

  • Dewachter, I., Filipkowski, R. K., Priller, C., et al. (2009). Deregulation of NMDA-receptor function and down-stream signaling in APP[V717I] transgenic mice. Neurobiology of Aging, 30, 241–256.

    Article  PubMed  CAS  Google Scholar 

  • Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. Journal of Neuroscience, 21, 4125–4133.

    PubMed  CAS  Google Scholar 

  • Dineley, K. T., Bell, K. A., Bui, D., & Sweatt, J. D. (2002). Beta-amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. Journal of Biological Chemistry, 277, 25056–25061.

    Article  PubMed  CAS  Google Scholar 

  • Domingues, A., Almeida, S., da Cruz e Silva, E. F., Oliveira, C. R., & Rego, A. C. (2007). Toxicity of beta-amyloid in HEK293 cells expressing NR1/NR2A or NR1/NR2B N-methyl-D-aspartate receptor subunits. Neurochemistry International, 50, 872–880.

    Article  PubMed  CAS  Google Scholar 

  • Dornan, W. A., Kang, D. E., McCampbell, A., & Kang, E. E. (1993). Bilateral injections of beta A(25-35) + IBO into the hippocampus disrupts acquisition of spatial learning in the rat. NeuroReport, 5, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Dziewczapolski, G., Glogowski, C. M., Masliah, E., & Heinemann, S. F. (2009). Deletion of the alpha7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 29, 8805–8815.

    Article  PubMed  CAS  Google Scholar 

  • Ferchmin, P. A., Perez, D., Eterovic, V. A., & de Vellis, J. (2003). Nicotinic receptors differentially regulate N-methyl-D-aspartate damage in acute hippocampal slices. Journal of Pharmacology and Experimental Therapeutics, 305, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Tome, P., Brera, B., Arevalo, M. A., & de Ceballos, M. L. (2004). Beta-amyloid25–35 inhibits glutamate uptake in cultured neurons and astrocytes: Modulation of uptake as a survival mechanism. Neurobiology of Diseases, 15, 580–589.

    Article  CAS  Google Scholar 

  • Fodero, L. R., Mok, S. S., Losic, D., et al. (2004). Alpha7-nicotinic acetylcholine receptors mediate an Abeta(1-42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. Journal of Neurochemistry, 88, 1186–1193.

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz, T., Potier, B., Bashir, Z. I., Collingridge, G. L., & Parsons, C. G. (1996). Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. British Journal of Pharmacology, 117, 689–697.

    PubMed  CAS  Google Scholar 

  • Freir, D. B., & Herron, C. E. (2003). Nicotine enhances the depressive actions of A beta 1-40 on long-term potentiation in the rat hippocampal CA1 region in vivo. Journal of Neurophysiology, 89, 2917–2922.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S., Ji, Z., Morita, N., & Sumikawa, K. (1999). Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research, 846, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Gay, E. A., Giniatullin, R., Skorinkin, A., & Yakel, J. L. (2008). Aromatic residues at position 55 of rat alpha7 nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. Journal of Physiology, 586, 1105–1115.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., & Dani, J. A. (2005). Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. Journal of Neuroscience, 25, 6084–6091.

    Article  PubMed  CAS  Google Scholar 

  • Geula, C., Nagykery, N., Nicholas, A., & Wu, C. K. (2008). Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 309–318.

    Article  PubMed  Google Scholar 

  • Goto, Y., Niidome, T., Hongo, H., Akaike, A., Kihara, T., & Sugimoto, H. (2008). Impaired muscarinic regulation of excitatory synaptic transmission in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. European Journal of Pharmacology, 583, 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Grassi, F., Palma, E., Tonini, R., Amici, M., Ballivet, M., & Eusebi, F. (2003). Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. Journal of Physiology, 547, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T., & Young, A. B. (1989). Excitatory amino acids and Alzheimer’s disease. Neurobiology of Aging, 10, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Z., Liu, W., & Yan, Z. (2009). Beta-amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. Journal of Biological Chemistry, 284, 10639–10649.

    Article  PubMed  CAS  Google Scholar 

  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews. Molecular Cell Biology, 8, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Harkany, T., Abraham, I., Timmerman, W., et al. (2000). Beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. European Journal of Neuroscience, 12, 2735–2745.

    Article  PubMed  CAS  Google Scholar 

  • Harmeier, A., Wozny, C., Rost, B. R., et al. (2009). Role of amyloid-beta glycine 33 in oligomerization, toxicity, and neuronal plasticity. Journal of Neuroscience, 29, 7582–7590.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. E., Carney, J. M., Cole, P. S., et al. (1995). Beta-amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: Implications for Alzheimer’s disease. NeuroReport, 6, 1875–1879.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, H., Boehm, J., Sato, C., et al. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron, 52, 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M., Schurdak, M. E., Puttfarcken, P. S., El Kouhen, R., Gopalakrishnan, M., & Li, J. (2007). High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: Neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands. Brain Research, 1151, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Hu, N. W., Smith, I. M., Walsh, D. M., & Rowan, M. J. (2008). Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain, 131, 2414–2424.

    Article  PubMed  Google Scholar 

  • Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45, 583–595.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, A., Furukawa, K., Keller, J. N., & Mattson, M. P. (1997). Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. NeuroReport, 8, 2133–2137.

    Article  PubMed  CAS  Google Scholar 

  • Janus, C., Pearson, J., McLaurin, J., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Jolas, T., Zhang, X. S., Zhang, Q., et al. (2002). Long-term potentiation is increased in the CA1 area of the hippocampus of APP(swe/ind) CRND8 mice. Neurobiology of Diseases, 11, 394–409.

    Article  CAS  Google Scholar 

  • Jones, C. K., Brady, A. E., Davis, A. A., et al. (2008). Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. Journal of Neuroscience, 28, 10422–10433.

    Article  PubMed  CAS  Google Scholar 

  • Kabogo, D., Rauw, G., Amritraj, A., Baker, G., & Kar, S. (2008). Beta-amyloid-related peptides potentiate K(+)-evoked glutamate release from adult rat hippocampal slices. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2008.1008.1009.

  • Kamenetz, F., Tomita, T., Hsieh, H., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. E., Cirrito, J. R., Dong, H., Csernansky, J. G., & Holtzman, D. M. (2007). Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 104, 10673–10678.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. N., Pang, Z., Geddes, J. W., et al. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. Journal of Neurochemistry, 69, 273–284.

    PubMed  CAS  Google Scholar 

  • Kelly, B. L., & Ferreira, A. (2006). Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.

    Article  PubMed  CAS  Google Scholar 

  • Kenney, J. E., & Gould, T. W. (2008). Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Molecular Neurobiology, 38, 101–121.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D., & Tsai, L. H. (2009). Bridging physiology and pathology in AD. Cell, 137, 997–1000.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. H., Anwyl, R., Suh, Y. H., Djamgoz, M. B., & Rowan, M. J. (2001). Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. Journal of Neuroscience, 21, 1327–1333.

    PubMed  CAS  Google Scholar 

  • Klyubin, I., Walsh, D. M., Cullen, W. K., et al. (2004). Soluble Arctic amyloid beta protein inhibits hippocampal long-term potentiation in vivo. European Journal of Neuroscience, 19, 2839–2846.

    Article  PubMed  Google Scholar 

  • Klyubin, I., Betts, V., Welzel, A. T., et al. (2008). Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: Prevention by systemic passive immunization. Journal of Neuroscience, 28, 4231–4237.

    Article  PubMed  CAS  Google Scholar 

  • Klyubin, I., Wang, Q., Reed, M. N., et al. (2009). Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2009.04.005.

  • Koh, J. Y., Yang, L. L., & Cotman, C. W. (1990). Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 533, 315–320.

    Article  PubMed  CAS  Google Scholar 

  • Kotermanski, S. E., & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29, 2774–2779.

    Article  PubMed  CAS  Google Scholar 

  • Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., & Bacskai, B. J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science, 323, 1211–1215.

    Article  PubMed  CAS  Google Scholar 

  • Lacor, P. N., Buniel, M. C., Furlow, P. W., et al. (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible, nonfibrillar ligands derived from A beta(1-42) are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lau, C. G., & Zukin, R. S. (2007). NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Reviews Neuroscience, 8, 413–426.

    Article  PubMed  CAS  Google Scholar 

  • Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128–1132.

    Article  PubMed  CAS  Google Scholar 

  • Lawlor, B. A., & Davis, K. L. (1992). Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease? Biological Psychiatry, 31, 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. H., & Wang, H. Y. (2003). Differential physiologic responses of alpha7 nicotinic acetylcholine receptors to beta-amyloid-40 and beta-amyloid1-42. Journal of Neurobiology, 55, 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Léveillé, F., El Gaamouch, F., Gouix, E., et al. (2008). Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB Journal, 22, 4258–4271.

    Article  PubMed  CAS  Google Scholar 

  • Levin, E. D., Bradley, A., Addy, N., & Sigurani, N. (2002). Hippocampal alpha 7 and alpha 4 beta 2 nicotinic receptors and working memory. Neuroscience, 109, 757–765.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Feig, L. A., & Hartley, D. M. (2007). A brief, but repeated, swimming protocol is sufficient to overcome amyloid beta-protein inhibition of hippocampal long-term potentiation. European Journal of Neuroscience, 26, 1289–1298.

    Article  PubMed  Google Scholar 

  • Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. (2009). Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 62, 788–801.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S. A. (2007). Pathologically activated therapeutics for neuroprotection. Nature Reviews Neuroscience, 8, 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, A., & Yankner, B. A. (1996). Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Annals of the New York Academy of Sciences, 77, 89–95.

    Article  Google Scholar 

  • Lue, L. F., Kuo, Y. M., Roher, A. E., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.

    PubMed  CAS  Google Scholar 

  • Lynch, M. A. (2004). Long-term potentiation and memory. Physiological Reviews, 84, 87–136.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., Lesne, S., Kotilinek, L., et al. (2007). Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 104, 8167–8172.

    Article  PubMed  CAS  Google Scholar 

  • Machova, E., Jakubik, J., Michal, P., et al. (2008). Impairment of muscarinic transmission in transgenic APPswe/PS1dE9 mice. Neurobiology of Aging, 29, 368–378.

    Article  PubMed  CAS  Google Scholar 

  • Mann, E. O., & Greenfield, S. A. (2003). Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. Journal of Physiology, 551, 539–550.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S. E., de Fiebre, N. E., & de Fiebre, C. M. (2004). The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1–42 toxicity in primary neuron-enriched cultures. Brain Research, 1022, 254–256.

    Article  PubMed  CAS  Google Scholar 

  • Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: Involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 156, 898–910.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama, S., Matsumoto, A., Enomoto, T., & Nishizaki, T. (2000). Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience, 12, 3741–3747.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Maurice, T., Lockhart, B. P., & Privat, A. (1996). Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Research, 706, 181–193.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, M. P., Dahl, E. E., Overmier, J. B., Mantyh, P., & Cleary, J. (1994). Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behavioral and Neural Biology, 62, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • McLean, C. A., Cherny, R. A., Fraser, F. W., et al. (1999). Soluble pool of A beta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.

    Article  PubMed  CAS  Google Scholar 

  • Molnar, Z., Soos, K., Lengyel, I., Penke, B., Szegedi, V., & Budai, D. (2004). Enhancement of NMDA responses by beta-amyloid peptides in the hippocampus in vivo. NeuroReport, 15, 1649–1652.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. G., Moser, E. I., Riedel, G., et al. (2003). Elements of a neurobiological theory of the hippocampus: The role of activity-dependent synaptic plasticity in memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 773–786.

    Article  PubMed  CAS  Google Scholar 

  • Mousavi, M., & Hellstrom-Lindahl, E. (2009). Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro. Neurochemistry International, 54, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Muller, U., Cristina, N., Li, Z. W., et al. (1994). Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell, 79, 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S., Murayama, N., Noshita, T., Katsuragi, R., & Ohno, T. (2006). Cognitive dysfunction induced by sequential injection of amyloid-beta and ibotenate into the bilateral hippocampus; protection by memantine and MK-801. European Journal of Pharmacology, 548, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Newhouse, P. A., Potter, A., & Singh, A. (2004). Effects of nicotinic stimulation on cognitive performance. Current Opinion in Pharmacology, 4, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Nitta, A., Itoh, A., Hasegawa, T., & Nabeshima, T. (1994). Beta-amyloid protein-induced Alzheimer’s disease animal model. Neuroscience Letters, 170, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Nakanishi, H., & Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide. Neuroscience, 92, 1465–1474.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A., Alafuzoff, I., & Winblad, B. (1992). Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. Journal of Neuroscience Research, 31, 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Oddo, S., & LaFerla, F. M. (2006). The role of nicotinic acetylcholine receptors in Alzheimer’s disease. Journal of Physiology (Paris), 99, 172–179.

    Article  CAS  Google Scholar 

  • Origlia, N., Righi, M., Capsoni, S., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. Journal of Neuroscience, 28, 3521–3530.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, C. G., Stoffler, A., & Danysz, W. (2007). Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology, 53, 699–723.

    Article  PubMed  CAS  Google Scholar 

  • Pena, F., Gutierrez-Lerma, A., Quiroz-Baez, R., & Arias, C. (2006). The role of beta-amyloid protein in synaptic function: Implications for Alzheimer’s disease therapy. Current Neuropharmacology, 4, 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Pettit, D. L., Shao, Z., & Yakel, J. L. (2001). Beta-amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. Journal of Neuroscience, 21, RC120.

    PubMed  CAS  Google Scholar 

  • Phinney, A. L., Calhoun, M. E., Wolfer, D. P., Lipp, H. P., Zheng, H., & Jucker, M. (1999). No hippocampal neuron or synaptic bouton loss in learning-impaired aged beta-amyloid precursor protein-null mice. Neuroscience, 90, 1207–1216.

    Article  PubMed  CAS  Google Scholar 

  • Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., & Pearson, H. A. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. Journal of Neuroscience, 23, 5531–5535.

    PubMed  CAS  Google Scholar 

  • Puzzo, D., Privitera, L., Leznik, E., et al. (2008). Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. Journal of Neuroscience, 28, 14537–14545.

    Article  PubMed  CAS  Google Scholar 

  • Ramsden, M., Plant, L. D., Webster, N. J., Vaughan, P. F., Henderson, Z., & Pearson, H. A. (2001). Differential effects of unaggregated and aggregated amyloid beta protein (1-40) on K(+) channel currents in primary cultures of rat cerebellar granule and cortical neurones. Journal of Neurochemistry, 79, 699–712.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, C. R., Ireland, D. R., & Abraham, W. C. (2003). NMDA receptor regulation by amyloid-beta does not account for its inhibition of LTP in rat hippocampus. Brain Research, 968, 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Reitz, C., Honig, L., Vonsattel, J. P., Tang, M. X., & Mayeux, R. (2009). Memory performance is related to amyloid and tau pathology in the hippocampus. Journal of Neurology, Neurosurgery and Psychiatry, 80, 715–721.

    Article  CAS  Google Scholar 

  • Ring, S., Weyer, S. W., Kilian, S. B., et al. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. Journal of Neuroscience, 27, 7817–7826.

    Article  PubMed  CAS  Google Scholar 

  • Roselli, F., Tirard, M., Lu, J., et al. (2005). Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. Journal of Neuroscience, 25, 11061–11070.

    Article  PubMed  CAS  Google Scholar 

  • Roth, M., Tomlinson, B. E., & Blessed, G. (1966). Correlation between scores for dementia and counts of ‘senile plaques’ in cerebral grey matter of elderly subjects. Nature, 209, 109–110.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, M. J., Klyubin, I., Cullen, W. K., & Anwyl, R. (2003). Synaptic plasticity in animal models of early Alzheimer’s disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, M. J., Klyubin, I., Wang, Q., Hu, N. W., & Anwyl, R. (2007). Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. Biochemical Society Transactions, 35, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Santos-Torres, J., Fuente, A., Criado, J. M., Riolobos, A. S., Heredia, M., & Yajeya, J. (2007). Glutamatergic synaptic depression by synthetic amyloid beta-peptide in the medial septum. Journal of Neuroscience Research, 85, 634–648.

    Article  PubMed  CAS  Google Scholar 

  • Savioz, A., Leuba, G., Vallet, P. G., & Walzer, C. (2009). Contribution of neural networks to Alzheimer disease’s progression. Brain Research Bulletin. doi:10.1016/j.brainresbull.2009.06.006.

  • Schliebs, R., & Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. Journal of Neural Transmission, 113, 1625–1644.

    Article  PubMed  CAS  Google Scholar 

  • Seabrook, G. R., Smith, D. W., Bowery, B. J., et al. (1999). Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 38, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Senechal, Y., Larmet, Y., & Dev, K. K. (2006). Unraveling in vivo functions of amyloid precursor protein: Insights from knockout and knockdown studies. Neurodegenerative Diseases, 3, 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Senechal, Y., Kelly, P. H., & Dev, K. K. (2008). Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behavioural Brain Research, 186, 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27, 2866–2875.

    Article  PubMed  CAS  Google Scholar 

  • Shankar, G. M., Li, S., Mehta, T. H., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.

    Article  PubMed  CAS  Google Scholar 

  • Shinoe, T., Matsui, M., Taketo, M. M., & Manabe, T. (2005). Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. Journal of Neuroscience, 25, 11194–11200.

    Article  PubMed  CAS  Google Scholar 

  • Small, D. H. (2008). Network dysfunction in Alzheimer’s disease: Does synaptic scaling drive disease progression? Trends in Molecular Medicine, 14, 103–108.

    PubMed  CAS  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, F. X., & Hardingham, G. E. (1997). Compartmentalized NMDA receptor signalling to survival and death. Journal of Physiology, 584, 381–387.

    Article  CAS  Google Scholar 

  • Srivareerat, M., Tran, T. T., Alzoubi, K. H., & Alkadhi, K. A. (2009a). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biological Psychiatry, 65, 918–926.

    Article  PubMed  CAS  Google Scholar 

  • Srivareerat, M., Tran, T. T., Salim, S., Aleisa, A. M., & Alkadhi, K. A. (2009b). Chronic nicotine restores normal Abeta levels and prevents short-term memory and E-LTP impairment in Abeta rat model of Alzheimer’s disease. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2009.04.015.

  • Stephan, A., Laroche, S., & Davis, S. (2001). Generation of aggregated beta-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. Journal of Neuroscience, 21, 5703–5714.

    PubMed  CAS  Google Scholar 

  • Szegedi, V., Juhasz, G., Budai, D., & Penke, B. (2005). Divergent effects of Abeta1-42 on ionotropic glutamate receptor-mediated responses in CA1 neurons in vivo. Brain Research, 1062, 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. J., Ireland, D. R., Ballagh, I., et al. (2008). Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of Diseases, 31, 250–260.

    Article  CAS  Google Scholar 

  • Teaktong, T., Graham, A. J., Court, J. A., et al. (2004). Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer’s disease and dementia with Lewy bodies: Differential neuronal and astroglial pathology. Journal of the Neurological Sciences, 225, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R. D. (1996). The pathogenesis of Alzheimer disease: An alternative to the amyloid hypothesis. Journal of Neuropathology and Experimental Neurology, 55, 1023–1025.

    Article  PubMed  CAS  Google Scholar 

  • Tietje, K. R., Anderson, D. J., Bitner, R. S., et al. (2008). Preclinical characterization of A-582941: A novel alpha7 neuronal nicotinic receptor agonist with broad spectrum cognition-enhancing properties. CNS Neuroscience and Therapeutics, 14, 65–82.

    Article  PubMed  CAS  Google Scholar 

  • Turner, P. R., O’Connor, K., Tate, W. P., & Abraham, W. C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology, 70, 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Verdier, Y., & Penke, B. (2004). Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer’s disease. Current Protein and Peptide Science, 5, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Dickson, D. W., Trojanowski, J. Q., & Lee, V. M. (1999). The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Experimental Neurology, 158, 328–337.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. Y., Lee, D. H., D’Andrea, M. R., Peterson, P. A., Shank, R. P., & Reitz, A. B. (2000). Beta-amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. Journal of Biological Chemistry, 275, 5626–5632.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Walsh, D. M., Rowan, M. J., Selkoe, D. J., & Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. Journal of Neuroscience, 24, 3370–3378.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2007). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493

    Google Scholar 

  • Wang, H., Song, L., Laird, F., Wong, P. C., & Lee, H. K. (2008a). BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. Journal of Neuroscience, 28, 8677–8681.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Klyubin, I., Wright, S., Griswold-Prenner, I., Rowan, M. J., & Anwyl, R. (2008b). Alpha v integrins mediate beta-amyloid induced inhibition of long-term potentiation. Neurobiology of Aging, 29, 1485–1493.

    Article  PubMed  CAS  Google Scholar 

  • Warpman, U., Alafuzoff, I., & Nordberg, A. (1993). Coupling of muscarinic receptors to GTP proteins in postmortem human brain—alterations in Alzheimer’s disease. Neuroscience Letters, 150, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Wasling, P., Daborg, J., Riebe, I., et al. (2009). Synaptic retrogenesis and amyloid-beta in Alzheimer’s disease. Journal of Alzheimers Disease, 16, 1–14.

    CAS  Google Scholar 

  • Welsby, P., Rowan, M., & Anwyl, R. (2006). Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. European Journal of Neuroscience, 24, 3109–3118.

    Article  PubMed  Google Scholar 

  • Welsby, P. J., Rowan, M. J., & Anwyl, R. (2007). Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology, 53, 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Welsby, P. J., Rowan, M. J., & Anwyl, R. (2009). Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. European Journal of Neuroscience, 29, 65–75.

    Article  PubMed  Google Scholar 

  • Wevers, A., Monteggia, L., Nowacki, S., et al. (1999). Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: Histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. European Journal of Neuroscience, 11, 2551–2565.

    Article  PubMed  CAS  Google Scholar 

  • Wevers, A., Burghaus, L., Moser, N., et al. (2000). Expression of nicotinic acetylcholine receptors in Alzheimer’s disease: Postmortem investigations and experimental approaches. Behavioural Brain Research, 113, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, N. J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in Neurobiology, 37, 475–524.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S., Malinin, N. L., Powell, K. A., Yednock, T., Rydel, R. E., & Griswold-Prenner, I. (2007). Alpha2beta1 and alphaVbeta1 integrin signaling pathways mediate amyloid-beta-induced neurotoxicity. Neurobiology of Aging, 28, 226–237.

    Article  PubMed  CAS  Google Scholar 

  • Wrighton, D. C., Baker, E. J., Chen, P. E., & Wyllie, D. J. A. (2008). Mg2+ and memantine block of rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. Journal of Physiology, 586, 211–225.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Anwyl, R., & Rowan, M. J. (1995a). Beta-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. NeuroReport, 6, 2409–2413.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Anwyl, R., & Rowan, M. J. (1995b). Beta-amyloid-(1-40) increases long-term potentiation in rat hippocampus in vitro. European Journal of Pharmacology, 284, R1–R3.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M. N., He, Y. X., Guo, F., & Qi, J. S. (2008). Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1 region in vivo. Brain Research Bulletin, 77, 84–90.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, Y., Hamaue, N., & Sumikawa, K. (2002). Nicotine compensates for the loss of cholinergic function to enhance long-term potentiation induction. Brain Research, 946, 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer’s disease: A progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimers Disease, 16, 833–843.

    Google Scholar 

  • Yang, T., Knowles, J. K., Lu, Q., et al. (2008). Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment. PLoS ONE, 3, e3604.

    Article  PubMed  CAS  Google Scholar 

  • Ye, C., Walsh, D. M., Selkoe, D. J., & Hartley, D. M. (2004). Amyloid beta-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neuroscience Letters, 366, 320–325.

    Article  PubMed  CAS  Google Scholar 

  • Zajaczkowski, W., Frankiewicz, T., Parsons, C. G., & Danysz, W. (1997). Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology, 36, 961–971.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. J., Steijaert, M. N., Lau, D., et al. (2007). Decoding NMDA receptor signaling: Identification of genomic programs specifying neuronal survival and death. Neuron, 53, 549–562.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, H., Jiang, M., Trumbauer, M. E., et al. (1995). Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell, 81, 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Zorumski, C. F., & Izumi, Y. (1998). Modulation of LTP induction by NMDA receptor activation and nitric oxide release. Progress in Brain Research, 118, 173–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of Science Foundation Ireland, the Health Research Board of Ireland, IRCSET, GSK and the Irish Development Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ondrejcak, T., Klyubin, I., Hu, NW. et al. Alzheimer’s Disease Amyloid β-Protein and Synaptic Function. Neuromol Med 12, 13–26 (2010). https://doi.org/10.1007/s12017-009-8091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8091-0

Keywords

Navigation