Skip to main content
Log in

Dye-sensitized solar cells based on composite TiO2 nanoparticle–nanorod single and bi-layer photoelectrodes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

TiO2 nanoparticle (NP), composite TiO2 nanoparticle–nanorod (NP–NR) and bi-layer TiO2 nanoparticle/nanorod (NP/NR) with the optimized diameter of NRs had been prepared as anode layer in dye-sensitized solar cells (DSSCs). Morphology and thickness of anode layers were provided by field emission scanning electron microscope (FE-SEM) and scanning electron microscopy (SEM) devices. Current density–voltage diagrams were prepared by potentiostat and solar simulator devices at air mass (AM) 1.5. It is determined that DSSCs based on composite NP–NR photoelectrode had the best conversion efficiency of 5.07%. Also, the results of the electrochemical modelling of these DSSCs indicated that solar cells based on NP–NR electrode had the highest electron transport time (τ d) of 312.87 ms, electrons’ recombination lifetime (τ n) of 130.4 ms and the lowest transfer resistance (R ct) as well as transport resistance (R t) of 22.46 and 9.4 Ω, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. O’Regan B and Gratzel M 1991 Nature 353 737

    Article  Google Scholar 

  2. Noack V, Weller H and Eychmuller A 2002 J. Phys. Chem. B 106 8514

    Article  Google Scholar 

  3. Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N and Han L Y 2006 J. Appl. Phys. 45 638

    Article  Google Scholar 

  4. Rhee S W and Kwon W 2011 Korean J. Chem. Eng. 28 1481

    Article  Google Scholar 

  5. Yoon Y I, Moon H S, Lyoo W S, Lee T S and Park W H 2009 Carbohydr. Polym. 75 246

    Article  Google Scholar 

  6. Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P et al 2001, J. Am. Chem. Soc. 123 1613

    Article  Google Scholar 

  7. Tae E L, Lee S H, Lee J K, Yoo S, Kang E J and Yoon K B 2005 J. Phys. Chem. B 109 22513

    Article  Google Scholar 

  8. Shan C X, Liu Z, Zhang Z Z, Shen D Z and Hark S K 2006 , J. Phys. Chem. B 110 11176

    Article  Google Scholar 

  9. Gratzel M 2003 J. Photochem. Photobiol. C 4 145

    Article  Google Scholar 

  10. Du S F, Liu H D and Chen Y F 2009 Nanotechnology 20 1

    Google Scholar 

  11. Yang L and Leung W 2013 Adv. Mater. 25 1792

    Article  Google Scholar 

  12. Meng L, Li C and dos Santos M P 2013 J. Inorg. Organomet. Polym. 23 787

    Article  Google Scholar 

  13. Zhang W, Zhu R, Liu B and Ramakrishna S 2011 Aust. J. Chem. 64 1282

    Article  Google Scholar 

  14. Ghadiri E, Taghavinia N, Zakeeruddin S M, Gratzel M and Moser E 2010 Nano Lett. 10 1632

    Article  Google Scholar 

  15. Gratzel M 2005 Inorg. Chem. 44 6841

    Article  Google Scholar 

  16. Laurence P 2009 Acc. Chem. Res. 42 1839

    Article  Google Scholar 

  17. Jang Y H, Xin X K, Byun M, Jang Y J, Lin Z Q and Kim D H 2011 Nano Lett. 12 479

    Article  Google Scholar 

  18. Li X, Lin H, Li J B, Li X X, Cui B and Zhang L Z 2008 , J. Phys. Chem. C 112 13744

    Article  Google Scholar 

  19. Parvazian E, Karimzadeh F and Enayati M H 2014 J. Electron. Mater. 43 1450

    Article  Google Scholar 

  20. Ferber J and Luther J 1998 Sol. Energy Mater. Sol. C 54 265

    Article  Google Scholar 

  21. Tan B and Wu Y 2005 J. Phys. Chem. B 110 15932

    Article  Google Scholar 

  22. Kang S H, Choi S H, Kang M S, Kim J Y, Kim H S, Hyeon T and Sung Y E 2008 Adv. Mater. 20 54

    Article  Google Scholar 

  23. Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M and Wang F 2004 J. Am. Chem. Soc. 126 14943

    Article  Google Scholar 

  24. Wu J J, Chen G R, Lu C C, Wu W T and Chen J S 2008 Nanotechnology 19 105702

    Article  Google Scholar 

  25. Madhugiri S, Dalton A, Gutierrez J, Ferraris J J P and Balkus K J 2003 J. Am. Chem. Soc. 125 14531

    Article  Google Scholar 

  26. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A and Wendorff J H 2001 Adv. Mater. 13 70

    Article  Google Scholar 

  27. Zhan S H, Chen D R, Jiao X L and Liu S S 2007 J. Colloid Interface Sci. 308 265

    Article  Google Scholar 

  28. Li D and Xia Y N 2003 Nano Lett. 3 555

    Article  Google Scholar 

  29. Hou H Q and Reneker D H 2004 Adv. Mater. 16 69

    Article  Google Scholar 

  30. Zhao J G, Jia C W, Duan H G, Sun Z W, Wang X M and Xie E Q 2008 J. Alloys Compd. 455 497

    Article  Google Scholar 

  31. Ito S, Murakami T N, Comte P, Liska P, Grätzel C, Nazeeruddin M K and Grätzel M 2008 Thin Solid Films 516 4613

    Article  Google Scholar 

  32. Bisquert J, Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G and Gimenez S 2009 J. Phys. Chem. C 113 17278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E PARVAZIAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

REZVANI, F., PARVAZIAN, E. & HOSSEINI, S.A. Dye-sensitized solar cells based on composite TiO2 nanoparticle–nanorod single and bi-layer photoelectrodes. Bull Mater Sci 39, 1397–1402 (2016). https://doi.org/10.1007/s12034-016-1278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1278-8

Keywords

Navigation