Skip to main content

Advertisement

Log in

Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum (Mo)-doped vanadium dioxide (\(\hbox {VO}_{2}\)(B)) nanobelts were successfully synthesized using commercial vanadium pentoxide (\(\hbox {V}_{2}\hbox {O}_{5}\)) as the starting material and ammonium molybdate as the dopant by a simple hydrothermal route. Then, Mo-doped \(\hbox {VO}_{2}\)(B) nanobelts were transformed to Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts by calcination at \(400{^{\circ }}\hbox {C}\) under an air atmosphere. The samples were characterized by X-ray powder diffraction, energy-dispersive X-ray spectrometer, elemental mapping, X-ray photoelectron spectroscopy, X-ray fluorescence and transmission electron microscopy techniques. The results showed that Mo-doped \(\hbox {VO}_{2}\)(B) and \(\hbox {V}_{2}\hbox {O}_{5}\) solid solution with high purity were obtained. The electrochemical properties of Mo-doped \(\hbox {VO}_{2}\)(B) and \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts as supercapacitor electrodes were measured using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The specific capacitance of \(\hbox {VO}_{2}\)(B) nanobelts slightly declines with Mo doping, however, the specific capacitance of \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts greatly improves with Mo doping. Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts exhibit the specific capacitance as high as 526 F \(\hbox {g}^{-1}\) at the current density of 1 A \(\hbox {g}^{-1}\). Both CV and GCD curves show that they have good rate capability and retain 464, 380, 324 and 273 F \(\hbox {g}^{-1}\) even at a high-current density of 2, 5, 10 and 20 A \(\hbox {g}^{-1}\), respectively. It turns out that Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts are ideal materials for supercapacitor electrodes in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu Z, Tetard L, Zhai L and Thomas J 2015 Energy Environ. Sci. 8 702

    Article  CAS  Google Scholar 

  2. Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J 2015 Chem. Soc. Rev. 44 7484

    Article  CAS  Google Scholar 

  3. Zhang Y and Meng C 2015 Mater. Lett. 160 404

    Article  CAS  Google Scholar 

  4. Yu M, Qiu W, Wang F, Zhai T, Fang P, Lu X et al 2015 J. Mater. Chem. A 3 15792

    Article  CAS  Google Scholar 

  5. Zhang Y, Zheng J, Wang Q, Hu T and Meng C 2016 RSC Adv. 6 93741

    Article  CAS  Google Scholar 

  6. Jing X, Wang C, Feng W, Xing N, Jiang H, Lu X et al 2018 R. Soc. Open Sci. 5 171768

    Article  Google Scholar 

  7. Zhang Y 2018 Chem. Sel. 3 1577

    CAS  Google Scholar 

  8. Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L et al 2014 Nanoscale 6 5008

    Article  CAS  Google Scholar 

  9. Zhang L L and Zhao X S 2009 Chem. Soc. Rev. 38 2520

    Article  CAS  Google Scholar 

  10. Zheng J, Zhang Y, Wang N, Zhao Y, Tian F and Meng C 2016 Mater. Lett. 171 240

    Article  CAS  Google Scholar 

  11. Singh A and Chandra A 2015 Sci. Rep. 5 15551

    Article  CAS  Google Scholar 

  12. Trasatti S and Kurzweil I 1994 Platinum Met. Rev. 38 46

    CAS  Google Scholar 

  13. Perera S D, Rudolph M, Mariano R G, Nijem N, Ferraris J P, Chabal Y J et al 2013 Nano Energy 2 966

    Article  CAS  Google Scholar 

  14. Wang Q, Zhang Y, Zheng J, Wang Y, Hu T and Meng C 2017 Dalton Trans. 46 4303

    Article  CAS  Google Scholar 

  15. Umeshbabu E and Ranga Rao G 2016 J. Colloid Interface Sci. 472 210

    Article  CAS  Google Scholar 

  16. Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W et al 2015 Ceram. Int. 41 12626

    Article  CAS  Google Scholar 

  17. Peng T, Wang J, Liu Q, Liu J and Wang P 2015 CrystEngComm 17 1673

    Article  CAS  Google Scholar 

  18. Guo Y, Li J, Chen M and Gao G 2015 J. Power Sources 273 804

    Article  CAS  Google Scholar 

  19. Wang N, Zhang Y, Hu T, Zhao Y and Meng C 2015 Curr. Appl. Phys. 15 493

    Article  CAS  Google Scholar 

  20. Zhang Y and Huang Y 2016 Mater. Lett. 182 285

    Article  CAS  Google Scholar 

  21. Liang L, Liu H and Yang W 2013 J. Alloys Compd. 559 167

    Article  CAS  Google Scholar 

  22. Xu L, Zhang Y, Deng Y, Zhong Y, Mo S, Cheng G et al 2013 Mater. Res. Bull. 48 3620

    Article  CAS  Google Scholar 

  23. Zhang Y, Huang Y, Zhang J, Wu W, Niu F, Zhong Y et al 2012 Mater. Res. Bull. 47 1978

    Article  CAS  Google Scholar 

  24. Zhang Y, Fan M, Zhou M, Huang C, Chen C, Cao Y et al 2012 Bull. Mater. Sci. 35 369

    Article  CAS  Google Scholar 

  25. Xu L, Zhang Y, Zhang X, Huang Y, Tan X, Huang C et al 2014 Bull. Mater. Sci. 37 1397

    Article  CAS  Google Scholar 

  26. Zhang Y, Zheng J, Wang Q, Zhang S, Hu T and Meng C 2017 Appl. Surf. Sci. 423 728

    Article  CAS  Google Scholar 

  27. Zhang Y, Jing X, Wang Q, Zheng J, Jiang H and Meng C 2017 Dalton Trans. 46 15048

    Article  CAS  Google Scholar 

  28. Zheng J, Zhang Y, Wang Q, Jiang H, Liu Y, Lv T et al 2018 Dalton Trans. 47 452

    Article  CAS  Google Scholar 

  29. Hu T, Liu Y, Zhang Y, Nie Y, Zheng J, Wang Q et al 2018 Microporous Mesoporous Mater. 262 199

    Article  CAS  Google Scholar 

  30. Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster H E et al 2013 Nano Lett. 13 5408

    Article  CAS  Google Scholar 

  31. Zhang Y, Zheng J, Zhao Y, Hu T, Gao Z and Meng C 2016 Appl. Surf. Sci. 377 385

    Article  CAS  Google Scholar 

  32. Saravanakumar B, Purushothaman K K and Muralidharan G 2012 ACS Appl. Mater. Interfaces 4 4484

    Article  CAS  Google Scholar 

  33. Zhang Y, Zheng J, Hu T, Tian F and Meng C 2016 Appl. Surf. Sci. 371 189

    Article  CAS  Google Scholar 

  34. Yang J, Lan T, Liu J, Song Y and Wei M 2013 Electrochim. Acta 105 489

    Article  CAS  Google Scholar 

  35. Wee G, Soh H Z, Cheah Y L, Mhaisalkar S G and Srinivasan M 2010 J. Mater. Chem. 20 6720

    Article  CAS  Google Scholar 

  36. Zhang Y, Zheng J, Wang Q, Hu T, Tian F and Meng C 2017 Appl. Surf. Sci. 399 151

    Article  CAS  Google Scholar 

  37. Zhi M, Xiang C, Li J, Li M and Wu N 2013 Nanoscale 5 72

    Article  CAS  Google Scholar 

  38. Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X et al 2015 J. Mater. Chem. A 3 488

    Article  CAS  Google Scholar 

  39. Wu Y, Gao G and Wu G 2015 J. Mater. Chem. A 3 1828

    Article  CAS  Google Scholar 

  40. Jeyalakshmi K, Vijayakumar S, Purushothaman K K and Muralidharan G 2013 Mater. Res. Bull. 48 2578

    Article  CAS  Google Scholar 

  41. Zheng J, Zhang Y, Jing X, Wang Q, Hu T, Xing N et al 2017 Mater. Chem. Phys. 166 5

    Article  Google Scholar 

  42. Zhang Y, Chen C, Wu W, Niu F, Liu X, Zhong Y et al 2013 Ceram. Int. 39 129

    Article  CAS  Google Scholar 

  43. Theobald F, Cabala R and Bernard J 1976 J. Solid State Chem. 17 431

    Article  CAS  Google Scholar 

  44. Zhang Y, Li W, Fan M, Zhang F, Zhang J, Liu X et al 2012 J. Alloys Compd. 544 30

    Article  CAS  Google Scholar 

  45. Enjalbert R and Galy J 1986 Acta Crystallogr. C 42 1467

    Article  Google Scholar 

  46. Zhang Y, Zhang J, Zhang X, Mo S, Wu W, Niu F et al 2013 J. Alloys Compd. 570 104

    Article  CAS  Google Scholar 

  47. Silversmit G, Depla D, Poelman H, Marin G B and Gryse R D 2004 J. Electron Spectrosc. 135 167

    Article  CAS  Google Scholar 

  48. Wagner C D, Riggs W M, Davis L E and Moulder J F 1979 Handbook of X-ray photoelectrom spectroscopy (Minnesota: Perkin-Elmer Corporation)

  49. Tang C, Georgopoulos P, Fine M E, Cohen J B, Nygren M, Knapp G S et al 1985 Phys. Rev. B 31 1000

    Article  CAS  Google Scholar 

  50. Manning T D, Parkin I P, Blackman C and Qureshi U 2005 J. Mater. Chem. 15 4560

    Article  CAS  Google Scholar 

  51. Zhang Y, Zhang J, Zhang X, Deng Y, Zhong Y, Huang C et al 2013 Ceram. Int. 39 8363

    Article  CAS  Google Scholar 

  52. Qi J L, Wang X, Lin J H, Zhang F, Feng J C and Fei W D 2015 J. Mater. Chem. A 3 12396

    Article  CAS  Google Scholar 

  53. Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M and Doumerc J P 1994 Solid State Ion. 69 257

    Article  CAS  Google Scholar 

  54. Deng L, Zhang G, Kang L, Lei Z, Liu C and Liu Z-H 2013 Electrochim. Acta 112 448

    Article  CAS  Google Scholar 

  55. Lao Z J, Konstantinov K, Tournaire Y, Ng S H, Wang G X and Liu H K 2006 J. Power Sources 162 1451

    Article  CAS  Google Scholar 

  56. Lin Z, Yan X, Lang J, Wang R and Kong L-B 2015 J. Power Sources 279 358

    Article  CAS  Google Scholar 

  57. Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X et al 2009 Adv. Funct. Mater. 19 3420

    Article  CAS  Google Scholar 

  58. Reddy R N and Reddy R G 2006 J. Power Sources 156 700

    Article  CAS  Google Scholar 

  59. Lala N L, Jose R, Yusoff M M and Ramakrishna S 2012 J. Nanopart. Res. 14 1201

  60. Cao L, Zhu J, Li Y, Xiao P, Zhang Y, Zhang S et al 2014 J. Mater. Chem. A 2 13136

    Article  CAS  Google Scholar 

  61. Jeyalakshmi K, Vijayakumar S, Nagamuthu S and Muralidharan G 2013 Mater. Res. Bull. 48 760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 21601026 and 21771030) and Doctoral Research Foundation of Liaoning Province (201601035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, Y. Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping. Bull Mater Sci 42, 37 (2019). https://doi.org/10.1007/s12034-018-1693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1693-0

Keywords

Navigation