Skip to main content
Log in

Electrochemical preparation and magnetic properties of Co–Cu nanometric granular alloy films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A detailed electrodeposition of Co–Cu nanometric granular alloy films in citrate solution has been performed based on a galvanostatic technique. Electrochemical behaviour of the bath solution containing both \(\hbox {Co}^{2+}\) and \(\hbox {Cu}^{2+}\) was investigated by linear sweep voltammetry. Cathodic polarization curves indicated that high quality Co–Cu nanometric granular alloy films can be obtained at room temperature with a pH of 6 and current density equal to or more negative than \(-\,1.0\hbox { mA cm}^{-2}\). Magnetic properties of the films were measured at room temperature by the physical property measurement system. Magnetization curves of the as-prepared Co–Cu nanometric granular alloy films displayed superparamagnetism (SPM). However, after annealing at \(450^{\circ }\hbox {C}\) for 1 h, magnetic property of the films changed from SPM to ferromagnetism. Meanwhile, the annealed Co–Cu nanometric granular alloy films showed an increase in saturation magnetization with the increase of the current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhukova V, Garcia C, delVal J J, Ilyn M, Granovsky A and Zhukov A 2013 Thin Solid Films 543 142

    Article  CAS  Google Scholar 

  2. Schwarzacher W and Lashmore D S 1996 IEEE Trans. Magn. 32 3133

    Article  CAS  Google Scholar 

  3. Chassaing E, Morrone A and Schmidt J E 1999 J. Electrochem. Soc. 146 1794

    Article  CAS  Google Scholar 

  4. Kainuma S, Takayanagi K, Hisatake K and Watanabe T 2002 J. Magn. Magn. Mater. 246 207

    Article  CAS  Google Scholar 

  5. Liu Q X, Péter L, Pádár J and Bakonyi I 2005 J. Electrochem. Soc. 152 C316

    Article  CAS  Google Scholar 

  6. Rajasekaran N, Pogány L, Révész Á, Tóth B G, Mohan S, Péter L I et al 2014 J. Electrochem. Soc. 161 D339

    Article  CAS  Google Scholar 

  7. Alper M, Kockar H, Safak M and Baykul M C 2008 J. Alloys Compd. 453 15

    Article  CAS  Google Scholar 

  8. Torres J G, Gómez E and Vallés E 2009 J. Electroanal. Chem. 635 63

    Article  Google Scholar 

  9. Pellice E, Varea A, Pané S, Sivaraman K M, Nelson B J, Suriñach S et al 2011 ACS Appl. Mater. Interfaces 3 2265

    Article  Google Scholar 

  10. Ghosh S K, Choudhury P, Gupta S K, Ravikumar G, Kumar M S, Aswal D K et al 2006 Appl. Phys. Lett. 89 132507

    Article  Google Scholar 

  11. Bakonyi I and Péter L 2010 Prog. Mater. Sci. 55 107

    Article  CAS  Google Scholar 

  12. Franczak A, Levesque A, Zabinski P, Li D, Czapkiewicz M, Kowalik R et al 2015 Mater. Chem. Phys. 162 222

  13. Bachmaier A, Krenn H, Knoll P, Aboulfadl H and Pippan R 2017 J. Alloys Compd. 725 744

    Article  CAS  Google Scholar 

  14. Dhara S, Chowdhury R R, Lahiri S, Ray P and Bakonyi I 2015 J. Magn. Magn. Mater. 374 647

    Article  CAS  Google Scholar 

  15. Kumar D, Chaudhary S and Pandya D K 2015 J. Appl. Phys. 117 17C752

    Article  Google Scholar 

  16. Errahmani H, Berrada A, Schmerber G and Dinia A 2001 Mater. Lett. 51 48

    Article  CAS  Google Scholar 

  17. Torres J G, Vallés E and Gómez E 2010 Electrochim. Acta 55 5760

    Article  Google Scholar 

  18. Gu M 2007 Electrochim. Acta 52 4443

    Article  CAS  Google Scholar 

  19. Yuasa M, Kajikawa K, Nakazawa T, Hakamada M and Mabuchi M 2010 Scr. Mater. 63 132

    Article  CAS  Google Scholar 

  20. Karaagac O, Alper M and Kochar H 2010 J. Magn. Magn. Mater. 322 1098

    Article  CAS  Google Scholar 

  21. Zhang X X, Hernandez J M, Tejada J and Ziolo R F 1996 Phys. Rev. B 544 4101

    Article  Google Scholar 

  22. Massalski T B, Okamoto H, Subramanian P R and Kacprzak L (eds) 1996 Binary alloy phase diagrams 2nd ed. (USA: ASM International)

  23. Kenane S, Voiron J, Benbrahim N, Chainet E and Robaut F 2006 J. Magn. Magn. Mater. 297 99

    Article  CAS  Google Scholar 

  24. Bakonyi I, Péter L, Rolik Z, Kiss-Szabó K, Kupay Z, Tóth J et al 2004 Phys. Rev. B 70 054427

    Article  Google Scholar 

  25. Závěta K, Lachowicz H K, Maryško M, Arnold Z and Dłużewski P 2005 J. Alloys Compd. 392 12

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the college science and technology research Project of Hebei Provincial Education Office (No. ZD2016079) and the National Natural Sciences Foundation of China (No. 51702083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jia, W., Sun, H. et al. Electrochemical preparation and magnetic properties of Co–Cu nanometric granular alloy films. Bull Mater Sci 42, 103 (2019). https://doi.org/10.1007/s12034-019-1748-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1748-x

Keywords

Navigation