Skip to main content

Advertisement

Log in

Effect of back electrode on trap energy and interfacial barrier height of crystal violet dye-based organic device

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have studied the effect of aluminium-coated mylar (Al–M) sheet-based back electrode and aluminium (Al)-coated back electrode on trap energy (\(E_{\mathrm {t}})\) and barrier height (\(\phi _{\mathrm {b}})\) of crystal violet (CV) dye-based organic device. Two devices have been prepared using two different back electrodes. In both the devices, ITO-coated glass is used as front electrode. Both the organic devices have been prepared by using spin-coating techniques. We have measured the steady state current–voltage (IV) characteristics of these devices to estimate the trap energy (\(E_{\mathrm {t}})\) and barrier height (\(\phi _{\mathrm {b}})\) of the devices. Because of the insertion of a reflecting back electrode, the charge carriers are confined in the active layer, which reduces the \(E_{\mathrm {t}}\) from 0.044 to 0.034 eV and \(\phi _{\mathrm {b}}\) is reduced from 0.80 to 0.77 eV. The barrier height is also estimated by using another alternative method, which is known as Norde method. By using Norde method, \(\phi _{\mathrm {b}}\) is estimated, which reduces from 0.83 to 0.79 eV in the presence of reflecting back electrode. Both the methods show good consistency with each other. The reductions of these parameters indicate the enhancement of charge injection through the metal-organic dye interface. With the use of polished back electrode in the CV dye-based organic device, it is possible to modify the barrier height and trap energy and thereby modifies the conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim J J, Han M K and Noh Y Y 2011 Semicond. Sci. Technol26 3

    Google Scholar 

  2. Tessler N, Preezant Y, Rappaport N and Roichman Y 2009 Adv. Mater21 27

    Article  Google Scholar 

  3. Kumatani A, Li Y, Darmawan P, Minari T and Tsukagoshi K 2013 Nature 3 1026

    Google Scholar 

  4. Chakraborty S and Manik N B 2014 J. Semicond35 12

    Article  Google Scholar 

  5. Tung R T 1992 Phys. Rev. B 45 13509

    Article  CAS  Google Scholar 

  6. Mönch W 1999 J. Vac. Sci. Technol. B 17 1867

    Article  Google Scholar 

  7. Lara Bullejos P, Jiménez Tejada J A, Deen M J, Marinov O and Datars W R 2008 J. Appl. Phys. 103 06

  8. De Dilip K and Olawole Olukunle C 2019 J. Phys. Commun3 01

    Google Scholar 

  9. Yildirim M 2017 J. Polytech. 20 165

    Google Scholar 

  10. Shuugrue Christopher R, Mentzen Hans H and Linton Brian R 2015 J. Chem. Educ. 92 1

    Article  Google Scholar 

  11. Tuğluoğlu N and Karadeniz S 2012 Curr. Appl. Phys. 12 1529

    Article  Google Scholar 

  12. Sze S M and Kwok K N G 2007 Phys. Semicond. Devices (New Jersey: Wiley) (3rd edn)

  13. Chakraborty K, Chakraborty S and Manik N B 2018 J. Semicond. 39 094001

    Article  Google Scholar 

  14. Shah M, Karimov S Kh, Ahmad Z and Sayyad H M 2010 Chin. Phys. Lett. 27 10

    Google Scholar 

  15. Yakuphanoglu F 2010 Synth. Met. 160 15

    Google Scholar 

  16. Aydın M E, Kılıçoğlu T, Akkılıç K and Hosgören H 2006 Physica B 381 1

    Article  Google Scholar 

  17. Al-Ta’ii H, Amin Y and Periasamy V 2015 Sensors 15 4810

  18. Shah M, Sayyad H M, Karimov S Kh and Wahab F 2010 J. Phys. D Appl. Phys. 43 5104

  19. Harrabi Z, Jomni S, Beji L and Bouazizi A 2010 Physica B Condens. Matter 405 3745

    Article  CAS  Google Scholar 

  20. Norde H 1979 J. Appl. Phys. 50 5052

    Article  CAS  Google Scholar 

  21. Haldar A, Maity S and Manik N B 2008 Ionics 14 427

Download references

Acknowledgements

We sincerely acknowledge the University Grants Commission (UGC), for financial assistance and Sudipta Sen is thankful to UGC for awarding a research fellowship (Grant No. 3482/(NET-JULY2016)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Manik, N.B. Effect of back electrode on trap energy and interfacial barrier height of crystal violet dye-based organic device. Bull Mater Sci 43, 60 (2020). https://doi.org/10.1007/s12034-020-2047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2047-2

Keywords

Navigation