Skip to main content
Log in

Crystallization of copper(II) sulfate based minerals and MOF from solution: Chemical insights into the supramolecular interactions

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Crystallization of solids, molecular or non-molecular from solution is a supramolecular reaction. Nucleation of a lattice structure at supersaturation can be conceived to result from a critical nucleus, a high energy intermediate (supramolecular transition state). Conceptualization of a structure for the critical nucleus in terms of aggregation of tectons through non-covalent interactions provides chemical insights into the architecture of a solid. The retrosynthetic analysis of copper-based minerals and materials offers an elegant description for the crystal packing. It addresses the influence of the geometry, functionality and reactivity of copper tecton(s) in directing a specific supramolecular aggregation. The mechanistic approach provides guiding principles to chemists to account for the experimentally crystallized solids and a platform to practice structure-synthesis correlation. Rationalization of the same composition with different atomic arrangements (polymorphs), compositional variation leading to different pseudopolymorphs, degree of hydration (anhydrous to hydrated), water clusters, role of solvent, etc. can all be justified on molecular basis. Also, the method gives predictive components including directions to synthesize new solids. In a nutshell, the paper is an attempt to generalize the crystallization of inorganic solids from solution by recognizing supramolecular interactions between metal tectons and gain insights for designing new MOF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao C N R and Raveau B (eds) 1998 Transition metal oxides (Weinheim: Wiley-VCH)

    Google Scholar 

  2. Rao C N R and Gopalakrishnan J 1997 New directions in solid state chemistry (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  3. Cheetham A K, Rao C N R and Feller R K 2006 Chem. Comm. 4780

  4. Janiak C 2003 Dalton Trans. 2781

  5. Tranchemontagne D J, Mendoza-Cortés J L, O’Keefe M and Yaghi O M 2009 Chem. Soc. Rev. 38 1213

    Article  Google Scholar 

  6. Kitagawa S, Kitaura R and Noro S 2004 Angew. Chem. Int. Ed. 43 2334

    Article  CAS  Google Scholar 

  7. Gopalakrishnan J 2009 J. Chem. Sci. 121 235

    Article  CAS  Google Scholar 

  8. Gopalakrishnan J 1995 Chem. Mater. 7 1265

    Article  CAS  Google Scholar 

  9. Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M and Kim J 2003 Nature 423 705

    Article  CAS  Google Scholar 

  10. Phan A, Christian J D, Uribo-Romo F J, Knobler C B, O’Keeffe M and Yaghi O M 2010 Acc. Chem. Res. 43 58

    Article  CAS  Google Scholar 

  11. Longa J R and Yaghi O M 2009 Chem. Soc. Rev. 38 1213

    Article  Google Scholar 

  12. Thomas J and Ramanan A 2007 Curr. Sci. 93 1664

    CAS  Google Scholar 

  13. Ramanan A and Whittingham M S 2006 Cryst. Growth Des. 6 2419

    Article  CAS  Google Scholar 

  14. Pavani K, Ramanan A and Whittingham M S 2006 J. Mol. Str. 796 179

    Article  CAS  Google Scholar 

  15. Pavani K, Loftland S E, Ramanujachary K V and Ramanan A 2007 Eur. J. Inorg. Chem. 568

  16. Upreti S and Ramanan A 2007 Cryst. Growth Des. 7 966

    Article  CAS  Google Scholar 

  17. Thomas J and Ramanan A 2008 Cryst. Growth Des. 8 3390

    Article  CAS  Google Scholar 

  18. Pavani K, Singh M, Ramanan A, Lofland S E and Ramanujachary K V 2009 J. Mol. Str. 933 156

    Article  CAS  Google Scholar 

  19. Thomas J, Agarwal M, Ramanan A, Chernova N and Whittingham M S 2009 Cryst. Eng. Comm. 11 625

    CAS  Google Scholar 

  20. Singh M, Thomas J and Ramanan A 2010 Aust. J. Chem. 63 565

    Article  CAS  Google Scholar 

  21. Corey E J 1991 Angew. Chem. Int. Ed. Engl. 30 455

    Article  Google Scholar 

  22. Desiraju G R 1995 Angew. Chem. Int. Ed. 31 2311

    Google Scholar 

  23. Brunet P, Michel S and Wuest J D 1997 J. Am. Chem. Soc. 119 2737

    Article  CAS  Google Scholar 

  24. Desiraju G R 2007 Angew. Chem. Int. Ed. 46 8342

    Article  CAS  Google Scholar 

  25. Erdemer E, Lee A Y and Myerson A Y 2009 Acc. Chem. Res. 42 621

    Article  Google Scholar 

  26. Schüth F 2001 Curr. Opin. Sol. State and Mater. Sci. 5 389

    Article  Google Scholar 

  27. Novoa J J, Braga D and Addadi L (eds) 2007 Engineering of crystalline materials properties (The Netherlands: Springer)

    Google Scholar 

  28. Kitaigorodskii A I 1965 Acta Cryst. 18 585

    Article  CAS  Google Scholar 

  29. Etter M C 1990 Acc. Chem. Res. 23 120

    Article  CAS  Google Scholar 

  30. Millange F, Medina M I, Guillou N, Ferey G, Golden K M and Walton R I 2010 Angew. Chem. 49 763

    CAS  Google Scholar 

  31. Davey R J, Allen K, Blagden N, Cross W I, Lieberman H F, Quayle M J, Righini S, Seton L and Tiddy G J T 2002 Cryst. Eng. Comm. 4 57

    Google Scholar 

  32. Perrin D D and Sharma V S 1966 J. Inorg. Nucl. Chem. 28 1271

    Article  CAS  Google Scholar 

  33. Findlay A, Campbell A N and Smith N O 1951 The phase rule and its applications (New York: Dover Publications, Inc.)

    Google Scholar 

  34. Reddy C K, Das A and Jayaram B 2001 J. Mol. Biol. 314 619

    Article  CAS  Google Scholar 

  35. Zhanga X J, Xinga Y H, Hana J, Gec M-Fa and Niu S Y 2007 Z. Anorg. Allg. Chem. 633 269

    Google Scholar 

  36. Maciejewski M, Baiker A and Viebrock H 1993 Solid State Ionics 63–65 346

    Article  Google Scholar 

  37. Fernandes C, Neves A, Bortoluzzi A J, Szpoganicz B and Schwingel E 2001 Inorg. Chem. Commun. 4 354

    Article  CAS  Google Scholar 

  38. LaDuca R L 2009 Coord. Chem. Rev. 253 1759

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Kumar, D., Thomas, J. et al. Crystallization of copper(II) sulfate based minerals and MOF from solution: Chemical insights into the supramolecular interactions. J Chem Sci 122, 757–769 (2010). https://doi.org/10.1007/s12039-010-0064-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0064-1

Keywords

Navigation