Skip to main content

Advertisement

Log in

Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Drought is the most frequent natural disaster in Algeria during the last century, with a severity ranging over the territory and causing enormous damages to agriculture and economy, especially in the north-west region of Algeria. The above issue motivated this study, which is aimed to analyse and predict droughts using the Standardized Precipitation Index (SPI). The analysis is based on monthly rainfall data collected during the period from 1960 to 2010 in seven plains located in the north-western Algeria. While a drought forecast with 2 months lead-time is addressed using an artificial neural network (ANN) model. Based on SPI values at different time scales (3-, 6-, 9-, and 12-months), the seven plains of north-western Algeria are severely affected by drought, conversely of the eastern part of the country, wherein drought phenomena are decreased in both duration and severity. The analysis also shows that the drought frequency changes according to the time scale. Moreover, the temporal analysis, without considering the autocorrelation effect on change point and monotonic trends of SPI series, depicts a negative trend with asynchronous in change-point timing. However, this becomes less significant at 3 and 6 months’ time scales if time series are modelled using the corrected and unbiased trend-free-pre-whitening (TFPWcu) approach. As regards the ANN-based drought forecast in the seven plains with 2 months of lead time, the multi-layer perceptron networks architecture with Levenberg–Marquardt calibration algorithm provides satisfactory results with the adjusted coefficient of determination (\( R_{\text{adj}}^{2} \)) higher than 0.81 and the root-mean-square-error (RMSE) and the mean absolute error (MAE) less than 0.41 and 0.23, respectively. Therefore, the proposed ANN-based drought forecast model can be conveniently adopted to establish with 2 months ahead adequate irrigation schedules in case of water stress and for optimizing agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

Download references

Acknowledgement

The authors wish to thank the National Agency of Water Resources for providing material help and data on which reported analysis are based on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Zeroual.

Additional information

Communicated by Subimal Ghosh

Supplementary materials pertaining to this article are available on the Journal of Earth Science Website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achour, K., Meddi, M., Zeroual, A. et al. Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129, 42 (2020). https://doi.org/10.1007/s12040-019-1306-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1306-3

Keywords

Navigation