Skip to main content

Advertisement

Log in

Efficient Sugarcane Transformation via bar Gene Selection

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Genetic engineering provides new opportunities for improving economically important traits in sugarcane cultivars. In this study, an efficient Agrobacterium-mediated transformation system that uses the bar gene (a herbicide resistance gene that is used in conjunction with the herbicide Basta) as a selection marker was developed. Using this transformation selection system, all of the resistant plants after selection were nearly 100% polymerase chain reaction (PCR) detection positive and showed herbicide resistance. Each gram of sugarcane calli used for transformation produced approximately 12 transgenic lines. It took approximately 4 months to generate transgenic plants that measured 10 cm in height for greenhouse transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

GFP:

Green fluorescent protein

2,4-D:

2,4-Dichlorophenoxyacetic acid

6-BA:

6-Benzylaminopurine

NAA:

1-Naphthaleneacetic acid

AD2:

Synthetic Medicago truncatula Defensins4

AD3:

Native Medicago truncatula Defensins4 with KDEL

AD4:

Nynthetic Medicago truncatula Defensins4 with KDEL

Ppase:

Inorganic Pyrophosphatase Gene

SST:

Sucrose:sucrose 1-fructosyl transferase gene

References

  • Arencibia A, Molina P, Dela Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell Rep 14(5):305–309

    Article  CAS  PubMed  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Ananda Kumar P, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer(Chilo infuscatellus) resistance. Plant Cell Rep 29(4):383–395

    Article  CAS  PubMed  Google Scholar 

  • Basnayake SWV, Moyle R, Brich RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30(3):439–448

    Article  CAS  PubMed  Google Scholar 

  • Bower R, Brich RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2(3):409–416

    Article  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker free transgenic plants. Biotechnol J 2(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Dong SJ, Delucca P, Geijskes RJ, Ke J, Mayo K, Mai P, Sainz M, Caffall K, Moser T, Yarnall M, Setliff K, Jain R, Rawls E, Jones MS, Dunder E (2014) Advances in agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech 16(4):366–371

    Article  CAS  Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide resistance sugarcane (Saccharum officinarum L.) plants by agrobacterium-mediated transformation. Planta 206(1):20–27

    Article  Google Scholar 

  • Falco MC, Neto AT, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Rep 19(12):1188–1194

    Article  CAS  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–838

    CAS  PubMed  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane: dissection of homology-dependent virus resistance in a monocot that has complex poly-ploid genome. Plant Physiol 119(4):1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Kalunke RM, Kolge AM, Babu KH, Prasad DT (2009) Agrobacterium mediated transformation of sugarcane for borer resistance using Cry1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech 11(4):355–359

    Article  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23(3):134–143

    Article  CAS  PubMed  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Kapil Dev G, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32(10):1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mudge RS, Osabe K, Casu RE, Bonnett GD, Manners J, Brich RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229(3):549–558

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15(3):473–497

    Article  CAS  Google Scholar 

  • Priji PJ, Hemaprabha G (2015) Sugarcane specific drought responsive candidate genes belonging to ABA dependent pathway indentified from basic species clones of Saccharum sp. and Erianthus sp. Sugar Tech 17(2):130–137

    Article  CAS  Google Scholar 

  • Rani K, Sandhu SK, Gosal SS (2012) Genetic augmentation of sugarcane through direct gene transformation with OsglyII gene construct. Sugar Tech 14(3):229–236

    Article  CAS  Google Scholar 

  • Santosa DA, Hendroko R, Farouk A, Greiner R (2004) A rapid and highly efficient method for transformation of sugarcane callus. Mol Biotechnol 28(2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Snyman SJ (2004) Sugarcane transformation. Transgenic Crops World 2004:103–114

    Article  Google Scholar 

  • Srikanth K, Subramonian N, Premachandran MN (2011) Advances in transgenic research for insect resistance in sugarcane. Trop Plant Biol 4(1):52–61

    Article  CAS  Google Scholar 

  • Suprasanna P, Patade VY, Desai NS, Devarumath RM, Kawar PG, Pagariya MC, Canapathi A, Manickavasagam M, Badu KH (2011) Biotechnological developments in sugarcane improvement: an overview. Sugar Tech 13(4):322–335

    Article  CAS  Google Scholar 

  • Viswanathan R, Rao GP (2011) Disease scenario and Management of Major Sugarcane Diseases in India. Sugar Tech 13(4):336–353

    Article  CAS  Google Scholar 

  • Wei HR, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promotersand flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Jung JH, Zeng QC, Gallo M, Altpeter F (2012) Comparison of procedures for DNA coating of micro-carriers in the transient and stable biolistic transformation of sugarcane. Plant Cell 112(1):95–99

    Google Scholar 

  • Zhangsun DT, Luo SL, Chen RK, Tang KX (2007) Improved agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia 62(4):386–393

    Article  CAS  Google Scholar 

  • Zhu YJ, McCafferty H, Osterman G, Lim S, Agbayani R, Lehrer A, Schenck S, Komor E (2011) Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane. Transgenic Res 20(3):503–512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mr. Wenzhi Wang received financial support from Hainan Natural Science Foundation of Hainan Province of China (20163122). Ms. Shuzhen Zhang received financial support from National Natural Science Foundation of China (31371687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Zhang.

Additional information

Communicated by: Hugo A. Campos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Z., Yang, B.P., Feng, C.L. et al. Efficient Sugarcane Transformation via bar Gene Selection. Tropical Plant Biol. 10, 77–85 (2017). https://doi.org/10.1007/s12042-017-9186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-017-9186-7

Keywords

Navigation