Skip to main content
Log in

Analysis of the invasion of a city by Aedes aegypti via mathematical models and Bayesian statistics

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

We analysed data from the invasion of a city by Aedes aegypti by using a series of models based on Fisher’s reaction–diffusion equation with Richard’s growth model and Bayesian statistics. The model that best explains the invasion of the city was defined through a step-by-step process of model selection based on a series of candidate models. As explanatory variables, we used the effect of urbanization type and climate variables on the parameters of Fisher’s equation: carrying capacity (K), population growth rate (r), and the diffusion coefficient (D). The resulting model is a reaction–diffusion equation with a near-zero shape parameter, similar to a Gompertz-type growth. The population advance rate of 60.19 m/day allowed Aedes aegypti to fully occupy a medium-sized city in 5 months from the estimated date of colonization. We found that the carrying capacity was dependent on temperature and urbanization type. While the results are coherent with existing literature on this species, most of the theory on population dynamics of Aedes aegypti usually assumes a logistic growth instead of Gompertz population dynamics. This type of growth is faster than logistic at densities lower than the inflexion point but slower at higher densities. Therefore, it is possible that in a regime in which the K depends on the climate, Gompertz dynamics could stabilize the population of this species of mosquito faster than assumed by the existing theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data is available at GitHub (https://github.com/okktawio/paper-mosquito-invasion-concordia-data).

Code availability

Custom code is available at GitHub (https://github.com/okktawio/paper-mosquito-invasion-concordia-data).

References

  • Barclay HJ, Humble L (2009) Probability models to facilitate a declaration that an exotic insect species has not yet invaded an area. Biol Invasions 11:1267–1280

    Google Scholar 

  • Bar-Zeev, M. (1958) The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L.). Bulletin Entomol Res 49(1):157–163

  • Bello F, Vázquez D, Almirón N (2018) Momento de Cosecha. Ediciones INTA, Concordia, Entre Rı́os, Argentina. https://inta.gob.ar/sites/default/files/inta_concordia_momento_de_cosecha_citricos_0.pdf. Accessed 31 Aug 2020

  • Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP, Reiner Jr RC, Scott TW, Smith DL, Gething PW, Hay SI (2014) Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors. https://doi.org/10.1186/1756-3305-7-338

  • Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Delatte H, Grech MG, Leisnham PT, Maciel-de Freitas R (2013) Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites Vectors. https://doi.org/10.1186/1756-3305-6-351

    Article  PubMed  PubMed Central  Google Scholar 

  • Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A Novel Rate Model of Temperature-Dependent Development for Arthropods. Environ Entomol 28(1):22–29. https://doi.org/10.1093/ee/28.1.22

    Article  Google Scholar 

  • Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, Zhao H, Caccone A, Powell JR (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514–525

    CAS  PubMed  Google Scholar 

  • Burroni N, Avalos A, Assarof P, Roldan GEC (2016) Comparación de la actividad de Aedes aegypti, entre las temporadas 2014–2015 y 2015–2016, bajo tratamientos focales de descacharrización y concientización en Concordia, Entre Rı́os, in: X Jornadas Regionales sobre Mosquitos, INBIOTEC, FIBA, Mar del Plata, Argentina. https://fibamdp.files.wordpress.com/2016/03/xjrm-libro-resc3bamenes.pdf. Accessed 31 Aug 2020

  • Cantrell RS, Cosner C (2004) Spatial ecology via reaction-diffusion equations. John Wiley & Sons, New York, pp 19–45

    Google Scholar 

  • Caswell H, Fujiwara M (2004) Estimation: mark-recapture, matrix population models, and population dynamics. Anim Biodivers Conserv 27:471–488

    Google Scholar 

  • Chen X, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction–diffusion–advection model. J Math Biol 57:361–386

    PubMed  Google Scholar 

  • Curto S, Boffi R, Carbajo AE, Plastina R, Schweigmann N, Salomón O (2002) Reinfestación del territorio argentino por Aedes aegypti: distribución geográfica (1994–1999). In: Actualizaciones en artropodologı́a sanitaria Argentina. Fundación Mundo Sano, Buenos Aires 127–137

  • da Cruz Ferreira DA, Degener CM, de Almeida M-T, Bendati MM, Fetzer LO, Teixeira CP, Eiras AE (2017) Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and zika. Parasites Vectors 10:78

    PubMed  PubMed Central  Google Scholar 

  • Dhar M, Bhattacharya P (2018) Comparison of the logistic and the Gompertz curve under different constraints. J Stat Manag Syst 21:1189–1210

    Google Scholar 

  • Dick OB, San Martı́n JL, Montoya RH, del Diego J, Zambrano B, Dayan GH, (2012) The history of dengue outbreaks in the Americas. Am J Trop Med Hyg 87:584–593

    Google Scholar 

  • Do TTT, Martens P, Luu NH, Wright P, Choisy M (2014) Climatic-driven seasonality of emerging dengue fever in Hanoi. Vietnam BMC Public Health 14:1078

    PubMed  Google Scholar 

  • Dueñas JR, Llinás GA, Panzetta-Dutari G, Gardenal C (2009) Two different routes of colonization of Aedes aegypti in Argentina from neighboring countries. J Med Entomol 46:1344–1354

    PubMed  Google Scholar 

  • Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE (2014) The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol 51:496–516

    PubMed  Google Scholar 

  • El Moustaid F, Johnson LR (2019) Modeling temperature effects on population density of the dengue mosquito Aedes aegypti. Insects 10(11):393

    PubMed Central  Google Scholar 

  • Feldstein LR, Brownstein JS, Brady OJ, Hay SI, Johansson MA (2015) Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses. Trans R Soc Trop Med Hyg 109:303–312

    PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:355–369

    Google Scholar 

  • Garcia AG, Dos LS, Villela D, Maciel-de Freitas R et al (2016) Using Wolbachia releases to estimate Aedes aegypti (Diptera: Culicidae) population size and survival. PLoS ONE 11:e0160196–e0160196

    PubMed Central  Google Scholar 

  • Gaudino NM (1916) El dengue: Algunas consideraciones sobre la epidemia de Entre Rı́os de 1916. Revista de Sanidad Militar 617–627

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Guagliardo, SA, Morrison AC, Barboza JL, Requena E, Astete H, Vazquez-Prokopec G, Kitron U (2015) River boats contribute to the regional spread of the dengue vector Aedes aegypti in the Peruvian Amazon. PLoS neglected tropical dis 9(4):e0003648

  • Hamer GL, Donovan DJ, Hood-Nowotny R, Kaufman MG, Goldberg TL, Walker ED (2012) Evaluation of a stable isotope method to mark naturally-breeding larval mosquitoes for adult dispersal studies. J Med Entomol 49:61–70

    CAS  PubMed  Google Scholar 

  • Hemme RR, Thomas CL, Chadee DD, Severson DW (2010) Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Neglected Tropical Dis 4(3):e634

  • Hugo LE, Jeffery JA, Trewin BJ, Wockner LF, Yen NT, Le NH, Nghia LT, Hine E, Ryan PA, Kay BH (2014) Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam. PLoS Neg Trop Dis. https://doi.org/10.1371/journal.pntd.0002669

    Article  Google Scholar 

  • INDEC (1991) Censo 1991. Technical report. INDEC, Argentina. https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-136. Accessed 31 Ago 2020

  • INDEC (2001) Censo 2001. Technical report. INDEC, Argentina. https://web.archive.org/web/20101113144456/http://www.indec.gov.ar/webcenso/inde. Accessed 31 Ago 2020

  • Kandler A, Unger R (2010) Population dispersal via diffusion-reaction equations. Univ., Fak. für Mathematik, Techn

    Google Scholar 

  • Killeen GF, Knols BG, Gu W (2003) Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis 3:297–303

    PubMed  Google Scholar 

  • Klöckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code generation. doi:10.1016/j.parco.2011.09.001. Parallel Comput 38:157–174

    Google Scholar 

  • Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R, Martins AJ, Powell JR (2017) Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and zika viruses. PLoS Neg Trop Dis. https://doi.org/10.1371/journal.pntd.0005653

    Article  Google Scholar 

  • Lewis MA, Petrovskii SV, Potts JR (2016) The mathematics behind biological invasions. Volume 44. Springer

  • Leyva M, Marquetti MdC, Montada D (2012) Segregación de nicho de Aedes aegypti y Culex quinquefasciatus (Diptera: Culicidae) en condiciones de laboratorio. Rev Cubana Med Trop 64:206–211

    PubMed  Google Scholar 

  • Liang J, Yan Q, Xiang C, Tang S (2019) A reaction-diffusion population growth equation with multiple pulse perturbations. Commun Nonlinear Sci Numer Simul 74:122–137

    Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An Analytic Model for Description of Temperature Dependent Rate Phenomena in Arthropods 1. Environ Entomol 5(6):1133–1140. https://doi.org/10.1093/ee/5.6.1133

  • Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266

    CAS  PubMed  Google Scholar 

  • Loza JC (1946) Profilaxis y prevención de la fiebre amarilla. Rev Sanid Mil 45:498–501

    CAS  Google Scholar 

  • Martı́nez M, Pinón N, Willat G (2000) Culı́cidos detectados durante la investigación de Aedes aegypti en Uruguay. 1er Jornada Regional Sobre Mosquitos 4–5

  • Monteiro FA, Shama R, Martins AJ, Gloria-Soria A, Brown JE, Powell JR (2014) Genetic diversity of Brazilian Aedes aegypti: patterns following an eradication program. PLoS Neg Trop Dis. https://doi.org/10.1371/journal.pntd.0003167

    Article  Google Scholar 

  • Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58:277–282

    CAS  PubMed  Google Scholar 

  • Neira M, Lacroix R, Cáceres L, Kaiser PE, Young J, Pineda L, Black I, Sosa N, Nimmo D, Alphey L et al (2014) Estimation of Aedes aegypti (Diptera: Culicidae) population size and adult male survival in an urban area in Panama. Mem Inst Oswaldo Cruz 109:879–886

    PubMed  PubMed Central  Google Scholar 

  • Okubo A, Levin SA (2013) Diffusion and ecological problems: modern perspectives, vol 14. Springer Science & Business Media, Berlin

    Google Scholar 

  • PAHO (1997) Report on Aedes aegypti control. Technical report. Pan American Health Organization. Washington, DC, USA

  • Ramos S, De Ruyver R, Gattinoni N, Garin R, Garran S (2018) Estación agrometeorológica del INTA Concordia, 50 años de servicio a la comunidad. INTA Ediciones. Buenos Aires

  • Reinhold JM, Lazzari CR, Lahondère C (2018) Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects 9(4):158

    PubMed Central  Google Scholar 

  • Richards F (1959) A flexible growth function for empirical use. J of Exp Bot 10:290–301

    Google Scholar 

  • Robert C, Casella G (2013) Monte Carlo statistical methods. Springer Science & Business Media, Berlin

    Google Scholar 

  • Rojas-Araya D, Alto BW, Burkett-Cadena N, Cummings DA (2020) Detection of fluorescent powders and their effect on survival and recapture of Aedes aegypti (Diptera: Culicidae). J Med Entomol 57:266–272

    PubMed  Google Scholar 

  • Romi R, Boccolini D, Di Luca M, Medlock JM, Schaffner F, Severini F, Toma L (2018) The invasive mosquitoes of medical importance. Invasive species and human health. CABI, Washington, pp 76–87

    Google Scholar 

  • Rowley WA, Graham CL (1968) The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol 14:1251–1257

    CAS  PubMed  Google Scholar 

  • Russell RC, Webb C, Williams C, Ritchie S (2005) Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med Vet Entomol 19:451–457

    CAS  PubMed  Google Scholar 

  • Santana-Martı́nez JC, Molina J, Dussán J, (2017) Asymmetrical competition between Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) coexisting in breeding sites. Insects 8:111

    Google Scholar 

  • Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Google Scholar 

  • Scott TW, Morrison AC (2010) Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies. Dengue virus. Springer, Berlin, pp 115–128

    Google Scholar 

  • Silver JB (2007) Mosquito ecology: field sampling methods. Springer Science & Business Media, Berlin

    Google Scholar 

  • Simoes TC, Codeço CT, Nobre AA, Eiras AE (2013) Modeling the non-stationary climate dependent temporal dynamics of Aedes aegypti. PLoS ONE. https://doi.org/10.1371/journal.pone.0064773

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi LT, Maidana NA, Ferreira WC, Pulino P, Yang HM (2005) Mathematical models for the Aedes aegypti dispersal dynamics: travelling waves by wing and wind. Bull Math Biol 67:509–528

    PubMed  Google Scholar 

  • Tian C, Ruan S (2018) On an advection–reaction–diffusion competition system with double free boundaries modeling invasion and competition of Aedes albopictus and Aedes aegypti mosquitoes. J Differ Equations 265:4016–4051

    Google Scholar 

  • Vezzani D, Velázquez SM, Schweigmann N (2004) Seasonal pattern of abundance of Aedes aegypti (Diptera: Culicidae) in Buenos Aires city, Argentina. Mem Inst Oswaldo Cruz 99:351–356

    PubMed  Google Scholar 

  • Villela DAM, de Azambuja Garcia G, Maciel-de Freitas R (2017) Novel inference models for estimation of abundance, survivorship and recruitment in mosquito populations using mark-release-recapture data. PLoS Neg Trop Dis 11:e0005682

  • Winsor CP (1932) The Gompertz curve as a growth curve. PNAS 18:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lin Z (2019) The diffusive model for Aedes aegypti mosquito on a periodically evolving domain. Discrete Continuous Dyn Syst B 24:4703–4720

    Google Scholar 

Download references

Acknowledgements

We thank Arabella Peard, Guillermo Logarzo, Belén Aguirre, and Nora Burroni for their thoughtful comments on the manuscript and Nicolas Schweigmann for the support to this study. We also thank Dr. Hernan Rossi, who was the Director of the “Felipe Heras” Hospital during the study, Dr. Elena Ostrowsky who was Secretary of Health for the municipality, the hospital staff, and the secretary of health who collaborated with the study.

Funding

During the data collection, there was no specific financing; in the analysis stage, this work was supported by “IBIAL — Integrative Biology of Insects Affecting human Life” (FP7-Marie Curie-PEOPLE-IRSES 319015).

Author information

Authors and Affiliations

Authors

Contributions

Octavio Augusto Bruzzone: collected the field data, developed the model, and wrote the paper; María Eugenia Utgés: analysed, interpreted the data, and wrote the paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Octavio Augusto Bruzzone.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruzzone, O.A., Utgés, M.E. Analysis of the invasion of a city by Aedes aegypti via mathematical models and Bayesian statistics. Theor Ecol 15, 65–80 (2022). https://doi.org/10.1007/s12080-022-00528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-022-00528-y

Keywords

Navigation