Skip to main content
Log in

Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Five heterogeneous and two alkaline catalysts were applied into the hydrothermal liquefaction (HTL) of Chlorella pyrenoidosa, a low-lipid microalgal species. The effects of catalysts on the bio-crude oil yield were more substantial at 280 ºC (bio-crude oil yield was increased by 10 %) than at 240 ºC although bio-crude oil formation had already occurred at the low temperature. At 240 ºC, additions of catalyst could improve the boiling point distribution of bio-crude oil. At 280 ºC, addition of alkaline catalysts increased the fractions of compounds with high boiling points due to the formation of nitrogen and oxygen heterocyclic compounds. The majority of nitrogen (59∼68 %) and phosphorus (52∼86 %) content in the feedstock remained in the aqueous phase after the HTL process, implying the possible feasibility to reuse the nutrients in the post-HTL water. Carbon deposition and mineral mixing were found on the surface of metal catalysts after HTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  3. Rodolfi L, Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  4. Williams PJL, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590. doi:10.1039/b924978h

    Article  CAS  Google Scholar 

  5. Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ Sci 4:4587–4595

    Article  CAS  Google Scholar 

  6. Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20(6):1079–1085

    Article  Google Scholar 

  7. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol 102(1):17–25

    Article  CAS  Google Scholar 

  8. Peterson A, Vogel F, Lachance R, Fröling M, Antal M, Tester J (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1(1):32–65

    Article  CAS  Google Scholar 

  9. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098. doi:10.1021/cr068360d

    Article  CAS  PubMed  Google Scholar 

  10. Jena U, Das K, Kastner J (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technol 102(10):6221–6229

    Article  CAS  Google Scholar 

  11. Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil. Trans ASABE 54(1):239–246

    Article  Google Scholar 

  12. Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738

    Article  CAS  Google Scholar 

  13. Biller P, Riley R, Ross A (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresource Technol 102(7):4841–4848

    Article  CAS  Google Scholar 

  14. Duan PG, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50(1):52–61. doi:10.1021/ie100758s

    Article  CAS  Google Scholar 

  15. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  16. Yang Y, Feng C, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recycl 43(1):21–33

    Article  Google Scholar 

  17. Ross AB, Biller P, Kubacki ML, Li H, Lea-Langton A, Jones JM (2010) Hydrothermal processing of microalgae using alkali and organic acids. Fuel 89(9):2234–2243

    Article  CAS  Google Scholar 

  18. Becker E (1994) Microalgae: biotechnology and microbiology. Cambridge University, Cambridge

    Google Scholar 

  19. ASTM (2004a) Standard test method for water in petroleum products and bituminous materials by distillation. ASTM D95-99. Am. Soc. for Testing Materials, West Conshohocken, PA

  20. ASTM (2004b) Standard test method for sediment in crude oils and fuel oils by the extraction ASTM D473-02. Am. Soc. for Testing Materials, West Conshohocken, PA

  21. ASTM (2004c) Standard test method for toluene-insoluble (TI) content of tar and pitch. ASTM D4072-98. Am. Soc. for Testing Materials, West Conshohocken, PA

  22. ASTM (2005) Standard test method for boiling point distribution of samples with residues such as crude oils and atmospheric and vacuum residues by high temperature gas chromatography. ASTM D7169-05. Am. Soc. for Testing Materials, West Conshohocken, PA

  23. Vardon DR, Sharma B, Scott J, Yu G, Wang Z, Schideman L, Zhang Y, Strathmann TJ (2011) Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresource Technol 102(17):8295–8303

    Article  CAS  Google Scholar 

  24. Jazrawi C, Biller P, Ross AB, Montoya A, Maschmeyer T, Haynes BS (2013) Pilot plant testing of continuous hydrothermal liquefaction of microalgae. Algal Res 2(3):268–277

    Article  Google Scholar 

  25. López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  Google Scholar 

  26. Fu J, Lu X, Savage P (2010) Catalytic hydrothermal deoxygenation of palmitic acid. Energy Environ Sci 3(3):311–317

    Article  CAS  Google Scholar 

  27. Fu J, Lu X, Savage PE (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. ChemSusChem 4(4):481–486

    Article  CAS  PubMed  Google Scholar 

  28. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresource Technol 109:178–187. doi:10.1016/j.biortech.2012.01.008

    Article  CAS  Google Scholar 

  29. Xiu S, Shahbazi A, Shirley VB, Wang L (2011) Swine manure/crude glycerol co-liquefaction: physical properties and chemical analysis of bio-oil product. Bioresource Technol 102(2):1928–1932

    Article  CAS  Google Scholar 

  30. Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Sci. doi:10.1039/C1033EE24241B

    Google Scholar 

  31. Minowa T, Kondo T, Sudirjo S (1998) Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenerg 14(5–6):517–524

    Article  CAS  Google Scholar 

  32. Wang Z (2011) Reaction mechanisms of hydrothermal liquefaction of model compounds and biowaste feedstocks, PhD Dissertation. University of Illinois at Urbana-Champaign, Urbana

  33. Dote Y, Inoue S, Ogi T, Yokoyama S (1998) Distribution of nitrogen to oil products from liquefaction of amino acids. Bioresource Technol 64(2):157–160

    Article  CAS  Google Scholar 

  34. Zhang HW, Zhu W, Xu ZR, Gong M (2012) Distributions of carbon nitrogen and phosphorus in the products from SCWG of cyanobacteria. Adv Mater Res 518:326–331

    Google Scholar 

  35. Fu J, Shi F, Thompson L Jr, Lu X, Savage PE (2011) Activated carbons for hydrothermal decarboxylation of fatty acids. ACS Catal 1:227–231

    Article  CAS  Google Scholar 

  36. Elliott DC, Sealock LJ Jr, Baker EG (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548

    Article  CAS  Google Scholar 

  37. Yu J, Savage PE (2001) Catalyst activity, stability, and transformations during oxidation in supercritical water. Appl Catal B Environ 31(2):123–132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A graduate fellowship to support the first author by the Graduate College from University of Illinois at Urbana-Champaign is greatly appreciated. We also would like to express our gratitude towards Dr. Alexander Ulanov from Metabolomics Center in the University of Illinois at Urbana-Champaign for the help with analyzing volatile compounds in bio-crude oil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Zhang, Y., Guo, B. et al. Nutrient Flows and Quality of Bio-crude Oil Produced via Catalytic Hydrothermal Liquefaction of Low-Lipid Microalgae. Bioenerg. Res. 7, 1317–1328 (2014). https://doi.org/10.1007/s12155-014-9471-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9471-3

Keywords

Navigation