Skip to main content
Log in

Non-Isothermal Pyrolysis of Citrus Unshiu Peel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study, the non-isothermal pyrolysis of citrus unshui (C. unshiu) peel was studied by thermogravimetric analysis (TGA) and evolved gas analysis/pyrolyzer-gas chromatography/mass spectrometry (EGA/Py-GC/MS). Two types of analytical pyrolysis-GC/MS experiments, EGA-MS and multi-shot GC/MS, were conducted to determine the thermal profiles of the pyrolysis products, as well as the detailed pyrolysis product distribution of each thermal zone. The pyrolysis of pectin, hemicellulose, cellulose, and lignin was also carried out to interpret the pyrolysis behavior of C. unshiu peel. TGA and EGA-MS of C. unshiu peel revealed five main weight loss stages, such as water and limonene vaporization, pyrolysis of pectin, hemicellulose, cellulose, lignin, and char stabilization. Multi-shot GC/MS revealed the specific pyrolysis products of each component of C. unshiu peel. Limonene was vaporized with water below 140 °C. Large amounts of methanol, acetic acid, 5-hydroxymethylfurfural, 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-one, and p-vinylguaiacol were produced between 140 and 280 °C, at which temperature range pectin and hemicellulose decomposed. The specific pyrolyzates of cellulose formed between 211 and 360 °C, and a small amount of lignin pyrolyzates were also detected over a wide temperature range (141–360 °C). At temperatures higher than 360 °C, small amounts of aromatics were produced as the by-products of char stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faostat (2013) Faostat.fao.org. Retrieved -12-19

  2. Choi IS, Kim JH, Wi SG, Kim KH, Bae HJ (2013) Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl Energy 102:204–210

    Article  CAS  Google Scholar 

  3. Park HJ, Dong JI, Jeon JK, Park YK, Yoo KS, Kim SS, Kim J, Kim S (2008) Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem Eng J 143:124–132

    Article  CAS  Google Scholar 

  4. Aguiar L, Márquez-Montesinos F, Gonzalo A, Sánchez JL, Arauzo J (2008) Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. J Anal Appl Pyrolysis 83:124–130

    Article  CAS  Google Scholar 

  5. Miranda R, Bustos-Martinez D, Blanco CS, Villarreal MHG, Cantú MER (2009) Pyrolysis of sweet orange (Citrus sinensis) dry peel. J Anal Appl Pyrolysis 86:245–251

    Article  CAS  Google Scholar 

  6. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133

    Article  CAS  PubMed  Google Scholar 

  7. Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100:736–741

    Article  Google Scholar 

  8. Kim YM, Lee HY, Lee SH, Kim SS, Park SH, Jeon JK, Kim S, Park YK (2011) Pyrolysis properties and kinetics of mandarin peel. Korean J Chem Eng 28(10):2012–2016

    Article  CAS  Google Scholar 

  9. Materazzi M, Gentili A, Curini R (2006) Application of evolved gas analysis. Part 2: EGA by mass spectrometry. Talanta 69:781–794

    Article  CAS  PubMed  Google Scholar 

  10. Tsuge S, Otami H, Watanabe C (2011) Pyrolysis-GC/MS Data Book of synthetic Polymers. Elsevier, Oxford

    Google Scholar 

  11. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301

    Article  CAS  Google Scholar 

  12. Blasi CD (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90

    Article  Google Scholar 

  13. Lopez-Velazquez DA, Santes V, Balmaseda J, Torres-Garcia E (2013) Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis 99:170–177

    Article  CAS  Google Scholar 

  14. Garcia-Maraver A, Salvachúa D, Martínez MJ, Diaz LF, Zamorano M (2013) Analysis of the relation between cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manage 33:2245–2249

    Article  CAS  Google Scholar 

  15. Boluda-Aguilar M, García-Vidal L, González-Castañeda FP, López-Gómez A (2010) Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour Technol 101:3506–3513

    Article  CAS  PubMed  Google Scholar 

  16. Rivas B, Torrado A, Torre P, Converti A, Dominguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56:2380–2387

    Article  CAS  PubMed  Google Scholar 

  17. Park YK, Kang YH, Cha HS, Kim HM, Seng HM (1996) Properties of pectin extracted by-product in citrus processing. J Korean Soc Food Sci Nutr 25(4):659–664

    CAS  Google Scholar 

  18. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrolysis 82:17–177

    Article  Google Scholar 

  19. http://en.wikipedia.org/wiki/Limonene. Accessed 30 Jun 2014

  20. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  21. Gullu D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Conv Manag 42:1349–1356

    Article  CAS  Google Scholar 

  22. Wang S, Ru B, Lin H, Luo Z (2013) Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresour Technol 143:378–383

    Article  CAS  PubMed  Google Scholar 

  23. Girisuta B, Kalogiannis KG, Dussan K, Leahy JJ, Hayes MHB, Stefanidis SD, Michailof CM, Lappas AA (2012) An integrated process for the production of platform chemicals and diesel miscible fuels by acid-catalyzed hydrolysis and downstream upgrading of the acid hydrolysis residues with thermal and catalytic pyrolysis. Bioresour Technol 126:92–100

    Article  CAS  PubMed  Google Scholar 

  24. Rane Zab Anish Kumar P, Bhaskar A (2012) Determination of bioactive components from the ethanolic peel extract of Citrus reticulata by gas chromatography–mass spectrometry. Int J Drug Dev Res 4:155–174

    Google Scholar 

  25. Wu YM, Zhao ZL, Li HB, He F (2009) Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol 427–432

  26. Hosoya T, Kawamoto H, Saka S (2009) Solid/liquid- and vapor phase interactions between cellulose- and lignin-derived pyrolysis products. J Anal Appl Pyrolysis 85:237–246

    Article  CAS  Google Scholar 

  27. Shen DK, Gu S, Luo KH, Wang SR, Fang MX (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol 101:6136–6146

    Article  CAS  PubMed  Google Scholar 

  28. McGrath T, Sharma R, Hajaligol M (2001) An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 80:1787–1797

    Article  CAS  Google Scholar 

  29. Carlson TR, Cheng YT, Jae J, Huber GW (2011) Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ Sci 4:145–161

    Article  CAS  Google Scholar 

  30. Wang K, Kim KH, Brown RC (2014) Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem 16:727–735

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2012R1A1B3003394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kwon Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YM., Lee, H.W., Kim, S. et al. Non-Isothermal Pyrolysis of Citrus Unshiu Peel. Bioenerg. Res. 8, 431–439 (2015). https://doi.org/10.1007/s12155-014-9534-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9534-5

Keywords

Navigation