Skip to main content
Log in

Feasibility of Manufacturing Cellulose Nanocrystals from the Solid Residues of Second-Generation Ethanol Production from Sugarcane Bagasse

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The reuse of the solid residues generated in the production of second-generation (2G) ethanol to obtain high-value products is a potential strategy for improving the economic and environmental viability of the overall process. This study evaluated the feasibility of using the residual solids remaining after the enzymatic hydrolysis of sugarcane bagasse for the production of cellulose nanocrystals (CNC), a valuable bionanomaterial. To this end, sugarcane bagasse subjected to steam explosion (SEB) or liquid hot water (LHWB) pretreatment was hydrolysed using different loadings of a commercial cellulase cocktail. Samples of SEB and LHWB were hydrolysed enzymatically, resulting in glucose releases close to 40 g/L, which would be suitable for producing 2G ethanol by microbial fermentation. The solid residues after the enzymatic hydrolysis step presented cellulose contents of up to 54 %, indicating that a significant amount of recalcitrant crystalline cellulose remained available for subsequent use. These solid residues were purified and submitted to acid hydrolysis, resulting in the successful formation of CNC with crystallinity close to 80 %, lengths of 193–246 nm and diameters of 14–18 nm. The CNC produced presented morphology, dimensions, physical-chemical characteristics, thermal stability and crystallinity within the ranges reported for this type of material. Moreover, the enzyme loading or the type of hydrothermal pretreatment process employed here showed no significant effects on the CNC obtained, indicating that these variables could be flexibly adjusted according to specific interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pereira SC, Maehara L, Machado CMM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:16

    Article  Google Scholar 

  2. Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102:38–44

    Article  CAS  Google Scholar 

  3. CONAB (2014) CONAB (Companhia Nacional de Abastecimento): Acompanhamento da safra brasileira de cana-de-açúcar

  4. RFA (2014) RFA (renewable fuels association): world fuel ethanol production. ed.)^eds)

  5. Granbio (2016) http://www.granbio.com.br/en/

  6. Corporation I (2016) http://www.iogen.ca/raizen-project/index.html

  7. Sun J, Sun X, Zhao H, Sun R (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339

    Article  CAS  Google Scholar 

  8. Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenerg 35:146–152

    Article  CAS  Google Scholar 

  9. Zhu JY, Sabo R, Luo XL (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344

    Article  CAS  Google Scholar 

  10. Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  CAS  Google Scholar 

  11. Correa AC, Teixeira ED, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  CAS  Google Scholar 

  12. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  CAS  Google Scholar 

  13. Li F, Mascheroni E, Piergiovanni L (2015) The potential of NanoCellulose in the packaging field: a review. Packag Technol Sci 28:475–508

    Article  Google Scholar 

  14. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  15. Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresnea A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crop Prod 32:486–490

    Article  CAS  Google Scholar 

  16. Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275

    Article  CAS  PubMed  Google Scholar 

  17. Li XJ, Qiu C, Ji N, Sun CX, Xiong L, Sun QJ (2015) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121:155–162

    Article  CAS  PubMed  Google Scholar 

  18. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  CAS  Google Scholar 

  19. Celluforce (2016) http://celluforce.com/en/index.php

  20. Inc. AP (2016) http://americanprocess.com/Default.aspx

  21. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Liu CH, Chang PR, Cao XD, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615

    Article  CAS  Google Scholar 

  23. Teixeira ED, Correa AC, Manzoli A, Leite FL, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Article  CAS  Google Scholar 

  24. Teixeira ED, Bondancia TJ, Teodoro KBR, Correa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33:63–66

    Article  Google Scholar 

  25. Li JH, Wei XY, Wang QH, Chen JC, Chang G, Kong LX, Su JB, Liu YH (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  CAS  PubMed  Google Scholar 

  26. Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  CAS  Google Scholar 

  27. Martins DF, de Souza AB, Henrique MA, Silverio HA, Neto WPF, Pasquini D (2015) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaca (Panicum maximum). Ind Crop Prod 65:496–505

    Article  CAS  Google Scholar 

  28. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  29. Danial WH, Majid ZA, Muhid MNM, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169

    Article  CAS  PubMed  Google Scholar 

  30. Tsukamoto J, Duran N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543

    CAS  Google Scholar 

  31. Leistritz FL, Senechal DM, Stowers MD, McDonald WF, Saffron CM and Hodur NM (2006) Preliminary feasibility analysis for an integrated biomaterials and ethanol biorefinery using wheat straw feedstock. In Agribusiness & Applied Economics Report No. 590

  32. Gouveia E, do Nascimento R, Souto-Maior A, Rocha G (2009) Validation of methodology for the chemical characterization of sugar cane bagasse. Quim Nov. 32:1500–1503

  33. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  36. Aguiar RS, Luciano Silveira MH, Pitarelo AP, Corazza ML, Ramos LP (2013) Kinetics of enzyme-catalyzed hydrolysis of steam-exploded sugarcane bagasse. Bioresour Technol 147:416–423

    Article  CAS  PubMed  Google Scholar 

  37. Pu YQ, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:13

    Article  Google Scholar 

  38. Ko JK, Ximenes E, Kim Y, Ladisch MR (2015) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112:447–456

    Article  CAS  PubMed  Google Scholar 

  39. Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112:677–687

    Article  CAS  PubMed  Google Scholar 

  40. Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879

    CAS  PubMed  Google Scholar 

  41. Haven MO, Jorgensen H (2013) Adsorption of beta-glucosidases in two commercial preparations onto pretreated biomass and lignin. Biotechnol Biofuels 6:14

    Article  Google Scholar 

  42. Lu Q-l, Tang L-r, Wang S, Huang B, Chen Y-d, Chen X-r (2014) An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy 70:267–272

    Article  CAS  Google Scholar 

  43. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  PubMed  Google Scholar 

  44. Boujemaoui A, Mongkhontreerat S, Malmstrom E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464

    Article  CAS  PubMed  Google Scholar 

  45. Alemdar A, Sain M (2008) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombac¸ a (Panicummaximum). Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  46. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B 75:176–200

    Article  CAS  Google Scholar 

  47. Teixeira E d M, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian research funding agencies CAPES, CNPq, FAPESP, SISNANO/MCTI, Agronano Network and the Brazilian Agricultural Research Corporation (Embrapa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. C. Mattoso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, L.A., Pereira, S.C., Correa, A.C. et al. Feasibility of Manufacturing Cellulose Nanocrystals from the Solid Residues of Second-Generation Ethanol Production from Sugarcane Bagasse. Bioenerg. Res. 9, 894–906 (2016). https://doi.org/10.1007/s12155-016-9744-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9744-0

Keywords

Navigation