Skip to main content
Log in

Effect of the Sugarcane Bagasse Deacetylation in the Pentoses Fermentation Process

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Biomass alkaline deacetylation prior to acid pretreatment can be a promising alternative to reduce the toxicity of hemicellulosic hydrolysates and improve second-generation bioethanol production. In this paper, the effect of alkaline deacetylation of sugarcane bagasse on bioethanol production by Spathaspora passalidarum was evaluated. Sugarcane bagasse deacetylated hemicellulosic hydrolysate (DHH) was processed using the following sequence: (1) deacetylation (0.4%, w/v NaOH, 70 °C, 3 h) and (2) acid pretreatment (0.5% (v/v) of H2SO4, 140 °C, 15 min). Non-deacetylated, hemicellulosic hydrolysate (HH), was obtained applying only acid pretreatment (0.5% (v/v) of H2SO4, 140 °C, 15 min). Biomass deacetylation reduced the content of acetic acid and some phenolic compounds in the hydrolysate (DHH) compared to acid pretreatment (HH), which resulted in its low toxicity. Thus, the bioethanol production with DHH was of 16.92 g L−1, whereas only 1.3 g L−1 of bioethanol was obtained with HH fermentation. Deacetylation process provided a 13-fold increase in bioethanol production by S. passalidarum, showing that alkaline deacetylation followed by sulfuric acid pretreatment is a promising strategy to increase bioethanol production. This procedure provided a simple and practical alternative to the classic methods of detoxification of hemicellulosic hydrolysate from sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. https://doi.org/10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  2. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  CAS  Google Scholar 

  3. Thornley P, Gilbert P, Shackley S, Hammond J (2015) Maximizing the greenhouse gas reductions from biomass: the role of life cycle assessment. Biomass Bioenergy 81:35–43. https://doi.org/10.1016/j.biombioe.2015.05.002

    Article  CAS  Google Scholar 

  4. Mandegari MA, Farzad S, Görgens JF (2017) Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Res J 4:704–712. https://doi.org/10.18331/BRJ2017.4.3.7

    Article  CAS  Google Scholar 

  5. Szczerbowski D, Pitarelo AP, Zandoná Filho A, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101. https://doi.org/10.1016/j.carbpol.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  6. Zabed H, Sahu JN, Suely A et al (2017) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  CAS  Google Scholar 

  7. Moysés DN, Reis VCB, Almeida JRM et al (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:1–18. https://doi.org/10.3390/ijms17030207

    Article  CAS  Google Scholar 

  8. Hou J, Qiu C, Shen Y et al (2017) Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 17. https://doi.org/10.1093/femsyr/fox034

  9. Bonan CIDG, Biazi LE, Dionísio SR et al (2020) Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess Biosyst Eng 43:1509–1519. https://doi.org/10.1007/s00449-020-02344-2

    Article  CAS  PubMed  Google Scholar 

  10. Cadete RM, Las Heras AM, Sandström AG et al (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9:1–14. https://doi.org/10.1186/s13068-016-0570-6

    Article  CAS  Google Scholar 

  11. Su YK, Willis LB, Jeffries TW (2015) Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124. Biotechnol Bioeng 112:457–469. https://doi.org/10.1002/bit.25445

    Article  CAS  PubMed  Google Scholar 

  12. Long TM, Su Y-K, Headman J et al (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500. https://doi.org/10.1128/AEM.00374-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakanishi SC, Soares LB, Biazi LE et al (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357

    Article  CAS  PubMed  Google Scholar 

  14. Soares LB, Bonan CIDG, Biazi LE et al (2020) Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass Bioenergy 137:105549. https://doi.org/10.1016/j.biombioe.2020.105549

    Article  CAS  Google Scholar 

  15. Yu H, Guo J, Chen Y et al (2017) Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1–58. Bioresour Technol 232:168–175. https://doi.org/10.1016/j.biortech.2017.01.077

    Article  CAS  PubMed  Google Scholar 

  16. Neitzel T, Lima CS, Biazi LE et al (2020) Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum. Renew Energy 160:1206–1216. https://doi.org/10.1016/j.renene.2020.07.027

    Article  CAS  Google Scholar 

  17. Hou X, Yao S (2012) Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol 93:2591–2601. https://doi.org/10.1007/s00253-011-3693-5

    Article  CAS  PubMed  Google Scholar 

  18. Van der Pol EC, Bakker RR, Baets P, Eggink G (2014) By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels. Appl Microbiol Biotechnol 98:9579–9593. https://doi.org/10.1007/s00253-014-6158-9

    Article  CAS  PubMed  Google Scholar 

  19. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  20. Roque LR, Morgado GP, Nascimento VM et al (2019) Liquid-liquid extraction: a promising alternative for inhibitors removing of pentoses fermentation. Fuel 242:775–787. https://doi.org/10.1016/j.fuel.2018.12.130

    Article  CAS  Google Scholar 

  21. Canilha L, Santos VTO, Rocha GJM et al (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475. https://doi.org/10.1007/s10295-010-0931-2

    Article  CAS  PubMed  Google Scholar 

  22. Rocha GJM, Gonçalves AR, Nakanishi SC et al (2015) Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification. Ind Crop Prod 74:810–816. https://doi.org/10.1016/j.indcrop.2015.05.074

    Article  CAS  Google Scholar 

  23. Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:1–10. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  Google Scholar 

  24. de Castro RC, A, Fonseca BG, dos Santos HTL et al (2017) Alkaline deacetylation as a strategy to improve sugars recovery and ethanol production from rice straw hemicellulose and cellulose. Ind Crop Prod 106:65–73. https://doi.org/10.1016/j.indcrop.2016.08.053

  25. Kundu C, Lee HJ, Lee JW (2015) Enhanced bioethanol production from yellow poplar by deacetylation and oxalic acid pretreatment without detoxification. Bioresour Technol 178:28–35. https://doi.org/10.1016/j.biortech.2014.08.082

    Article  CAS  PubMed  Google Scholar 

  26. Salvachúa D, Mohagheghi A, Smith H et al (2016) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels 9:1–15. https://doi.org/10.1186/s13068-016-0425-1

    Article  CAS  Google Scholar 

  27. Salvachúa D, Smith H, St. John PC et al (2016) Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. Bioresour Technol 214:558–566. https://doi.org/10.1016/j.biortech.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  28. Morales P, Gentina JC, Aroca G, Mussatto SI (2017) Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus. Ind Crop Prod 106:5–11. https://doi.org/10.1016/j.indcrop.2016.12.023

    Article  CAS  Google Scholar 

  29. Lima CS, Rabelo SC, Ciesielski PN et al (2018) Multiscale alterations in sugar cane cagasse and straw submitted to alkaline deacetylation. ACS Sustain Chem Eng 6:3796–3804. https://doi.org/10.1021/acssuschemeng.7b04158

    Article  CAS  Google Scholar 

  30. Fonseca BG, Mateo S, Roberto IC et al (2020) Bioconversion in batch bioreactor of olive-tree pruning biomass optimizing treatments for ethanol production. Biochem Eng J 164:107793. https://doi.org/10.1016/j.bej.2020.107793

    Article  CAS  Google Scholar 

  31. Mateo S, Mateo P, Barbanera M et al (2020) Acid hydrolysis of olive tree leaves: preliminary study towards biochemical conversion. Processes 8:1–13. https://doi.org/10.3390/pr8080886

    Article  CAS  Google Scholar 

  32. Peinado S, Mateo S, Sánchez S, Moya AJ (2019) Effectiveness of sodium borohydride treatment on acid hydrolyzates from olive-tree pruning biomass for bioethanol production. BioEnergy Res 12:302–311. https://doi.org/10.1007/s12155-019-09979-4

    Article  CAS  Google Scholar 

  33. Santoro DCJ, Assis T, Dionisio SR, et al (2015) Scaling up dilute sulfuric acid pretreatment for sugarcane bagasse bioethanol production. 37th Symp. Biotechnol. Fuels Chem

  34. Santos SC, Sousa AS, Dionísio SR et al (2016) Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresour Technol 219:319–329. https://doi.org/10.1016/j.biortech.2016.07.102

    Article  CAS  PubMed  Google Scholar 

  35. Sluiter JB, Chum H, Gomes AC et al (2016) Evaluation of Brazilian sugarcane bagasse characterization: an interlaboratory comparison study. J AOAC Int 99:579–585. https://doi.org/10.5740/jaoacint.15-0063

    Article  CAS  Google Scholar 

  36. Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161. https://doi.org/10.1021/ie00004a026

    Article  CAS  Google Scholar 

  37. Gouveia ER, do Nascimento RT, Souto-Maior AM, de Rocha GJ, M (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503. https://doi.org/10.1590/S0100-40422009000600026

  38. Gilliland RB (1959) Determination of yeast viability. J Inst Brew 65:424–429. https://doi.org/10.1002/j.2050-0416.1959.tb01482.x

    Article  Google Scholar 

  39. Wang W, Chen X, Katahira R, Tucker M (2019) Characterization and deconstruction of oligosaccharides in black liquor from deacetylation process of corn stover. Front Energy Res 7:1–10. https://doi.org/10.3389/fenrg.2019.00054

    Article  CAS  Google Scholar 

  40. Kohli K, Prajapati R, Sharma B (2019) Bio-based chemicals from renewable biomass for integrated biorefineries. Energies 12:1–40. https://doi.org/10.3390/en12020233

    Article  CAS  Google Scholar 

  41. Decostanzi M, Auvergne R, Boutevin B, Caillol S (2019) Biobased phenol and furan derivative coupling for the synthesis of functional monomers. Green Chem 21:724–747. https://doi.org/10.1039/C8GC03541E

    Article  CAS  Google Scholar 

  42. Chen X, Wang W, Ciesielski P et al (2016) Improving sugar yields and reducing enzyme loadings in the deacetylation and mechanical refining (DMR) process through multistage disk and szego refining and corresponding techno-economic analysis. ACS Sustain Chem Eng 4:324–333. https://doi.org/10.1021/acssuschemeng.5b01242

    Article  CAS  Google Scholar 

  43. Chen X, Shekiro J, Elander R, Tucker M (2012) Improved xylan hydrolysis of corn stover by deacetylation with high solids dilute acid pretreatment. Ind Eng Chem Res 51:70–76. https://doi.org/10.1021/ie201493g

    Article  CAS  Google Scholar 

  44. Shekiro J III, Kuhn EM, Nagle NJ et al (2014) Characterization of pilot-scale dilute acid pretreatment performance using deacetylated corn stover. Biotechnol Biofuels 7:1–10. https://doi.org/10.1186/1754-6834-7-23

    Article  CAS  Google Scholar 

  45. Cheng K-K, Cai B-Y, Zhang J-A et al (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38:105–109. https://doi.org/10.1016/j.bej.2007.07.012

    Article  CAS  Google Scholar 

  46. Senatham S, Chamduang T, Kaewchingduang Y et al (2016) Enhanced xylose fermentation and hydrolysate inhibitor tolerance of Scheffersomyces shehatae for efficient ethanol production from non-detoxified lignocellulosic hydrolysate. Springerplus 5:1–8. https://doi.org/10.1186/s40064-016-2713-4

    Article  CAS  Google Scholar 

  47. Canilha L, Carvalho W, Felipe MGA et al (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92. https://doi.org/10.1007/s12010-009-8792-8

    Article  CAS  PubMed  Google Scholar 

  48. Xu F, Sun RC, Sun JX et al (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552:207–217. https://doi.org/10.1016/j.aca.2005.07.037

    Article  CAS  Google Scholar 

  49. Ou SY, Luo YL, Huang CH, Jackson M (2009) Production of coumaric acid from sugarcane bagasse. Innov Food Sci Emerg Technol 10:253–259. https://doi.org/10.1016/j.ifset.2008.10.008

    Article  CAS  Google Scholar 

  50. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950. https://doi.org/10.1016/j.biortech.2006.07.047

    Article  CAS  PubMed  Google Scholar 

  51. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76. https://doi.org/10.1016/j.biortech.2014.01.090

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Jin M, Balan V et al (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111:152–164. https://doi.org/10.1002/bit.24992

    Article  CAS  PubMed  Google Scholar 

  53. Guo Z, Olsson L (2014) Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 14:1234–1248. https://doi.org/10.1111/1567-1364.12221

    Article  CAS  PubMed  Google Scholar 

  54. Fitzgerald DJ, Stratford M, Gasson MJ et al (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113. https://doi.org/10.1111/j.1365-2672.2004.02275.x

    Article  CAS  PubMed  Google Scholar 

  55. Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825. https://doi.org/10.1007/s00253-011-3167-9

    Article  CAS  PubMed  Google Scholar 

  56. Adeboye PT, Bettiga M, Olsson L (2017) ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep 7:1–13. https://doi.org/10.1038/srep42635

    Article  CAS  Google Scholar 

  57. Martiniano SE, Chandel AK, Soares LCSR et al (2013) Evaluation of novel xylose-fermenting yeast strains from Brazilian forests for hemicellulosic ethanol production from sugarcane bagasse. 3. Biotech 3:345–352. https://doi.org/10.1007/s13205-013-0145-1

    Article  Google Scholar 

  58. Dussán KJ, Silva DDV, Perez VH, da Silva SS (2016) Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Renew Energy 87:703–710. https://doi.org/10.1016/j.renene.2015.10.065

    Article  CAS  Google Scholar 

  59. Ferreira AD, Mussatto SI, Cadete RM et al (2011) Ethanol production by a new pentose-fermenting yeast strain, Scheffersomyces stipitis UFMG-IMH 43.2, isolated from the Brazilian forest. Yeast 28:547–554. https://doi.org/10.1002/yea.1858

    Article  CAS  PubMed  Google Scholar 

  60. Canilha L, Chandel AK, Suzane dos Santos Milessi T, et al (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 1:1–15. https://doi.org/10.1155/2012/989572

  61. Mateo S, Roberto IC, Sánchez S, Moya AJ (2013) Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod 49:196–203. https://doi.org/10.1016/j.indcrop.2013.04.046

    Article  CAS  Google Scholar 

  62. Martien JI, Amador-Noguez D (2017) Recent applications of metabolomics to advance microbial biofuel production. Curr Opin Biotechnol 43:118–126. https://doi.org/10.1016/j.copbio.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  63. Narayanan V, Sànchez i Nogué V, van Niel EWJ, Gorwa-Grauslund MF (2016) Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express 6:1–13. https://doi.org/10.1186/s13568-016-0234-8

    Article  CAS  Google Scholar 

  64. Nielsen F, Tomás-Pejó E, Olsson L, Wallberg O (2015) Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels 8:1–15. https://doi.org/10.1186/s13068-015-0399-4

    Article  CAS  Google Scholar 

  65. Cadete RM, Melo MA, Dussán KJ et al (2012) Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. PLoS One 7:1–11. https://doi.org/10.1371/journal.pone.0043135

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Brazilian funding agencies Coordination for the Improvement of Higher Education Personnel (CAPES – Finance code 001), the National Council for Scientific and Technological Development (CNPq, grant no. 455549/2014-1), and the Brazilian Biorenewables National Laboratory - LNBR (CNPEM/MCTIC). The latter provided open access to the Bioprocesses (BPC) facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleilton Santos Lima.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, C.S., Neitzel, T., de Oliveira Pereira, I. et al. Effect of the Sugarcane Bagasse Deacetylation in the Pentoses Fermentation Process. Bioenerg. Res. 14, 1171–1183 (2021). https://doi.org/10.1007/s12155-020-10243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10243-3

Keywords

Navigation