Skip to main content
Log in

Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus amyloliquefaciens LBM 5006 produces antagonistic activity against pathogenic bacteria and phytopathogenic fungi, including Aspergillus spp., Fusarium spp., and Bipolaris sorokiniana. PCR analysis revealed the presence of ituD, but not sfp genes, coding for iturin and surfactin, respectively. The antimicrobial substance produced by this strain was isolated by ammonium sulfate precipitation, gel filtration chromatography and 1-butanol extraction. The ultraviolet spectrum was typical of a polypeptide and the infrared spectrum indicates the presence of peptide bonds and acyl group(s). The antimicrobial substance was resistant to proteolytic enzymes and heat treatment, and was reactive with ninhydrin. Mass spectroscopy analysis indicated that B. amyloliquefaciens LBM 5006 produces two antimicrobial peptides, with main peaks at m/z 1,058 Da and 1,464 Da, corresponding to iturin-like and fengycin-like peptides, respectively. B. amyloliquefaciens LBM 5006 showed significant activity against phytopatogenic fungi, showing potential for use as a biocontrol agent or production of antifungal preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrios, G.N. 2005. Plant pathology. Elsevier, London, UK.

    Google Scholar 

  • Ajesh, K. and K. Sreejith. 2009. Peptide antibiotics: An alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  • Akpa, E., P. Jacques, B. Wathelet, M. Paquot, R. Fuchs, H. Budzikiewicz, and P. Thonart. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91, 551–561.

    Article  PubMed  Google Scholar 

  • Bais, H.P., R. Fall, and J.M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Besson, F. and G. Michel. 1987. Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. 40, 437–442.

    CAS  PubMed  Google Scholar 

  • Caldeira, A.T., S.S. Feio, J.M.S. Arteiro, A.V. Coelho, and J.C. Roseiro. 2008. Environmental dynamics of Bacillus amyloliquefaciens CCMI 1051 antifungal activity under different nitrogen patterns. J. Appl. Microbiol. 104, 808–816.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., L. Wang, C.X. Su, G.H. Gong, P. Wang, and Z.L. Yu. 2008. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett. Appl. Microbiol. 47, 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Cladera-Olivera, F., G.R. Caron, and A. Brandelli. 2006. Bacteriocinlike substance inhibits potato soft rot caused by Erwinia carotovora. Can. J. Microbiol. 52, 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Duitman, E.H., L.W. Hamoen, M. Rembold, G. Venema, H. Seitz, W. Saenger, F. Bernhard, and et al. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthetase. Proc. Natl. Acad. Sci. USA 96, 13294–13299.

    Article  CAS  PubMed  Google Scholar 

  • Evans, F.F., A.S. Rosado, G.V. Sebastián, R. Casella, P.L.O.A. Machado, C. Holmstrom, S. Kjelleberg, J.D. van Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Fabian, H., C. Schultz, D. Naumann, O. Landt, U. Hahn, and W. Saenger. 1993. Secondary structure and temperature-induced unfolding and refolding of ribonuclease-T1 in aqueous solution — a Fourier transform infrared spectroscopy study. J. Mol. Biol. 232, 967–981.

    Article  CAS  PubMed  Google Scholar 

  • Gaussier, H., M. Lavoie, and M. Subirade. 2003. Conformational changes of pediocin in an aqueous medium monitored by Fourier transform infrared spectroscopy: a biological implication. Int. J. Biol. Macromolec. 32, 1–9.

    Article  CAS  Google Scholar 

  • Hancock, R.E.W. and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61, 693–698.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, F.C., M.C. Li, T.C. Lin, and S.S. Kao. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr. Microbiol. 49, 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, F.C., T.C. Lin, M. Meng, and S.S. Kao. 2008. Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr. Microbiol. 56, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Hu, L.B., Z.Q. Shi, T. Zhang, and Z.M. Yang. 2007. Fengycin antibiotics isolated from B-FS01 culture inhibiting the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol. Lett. 272, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Kurusu, K. and K. Ohba. 1987. New peptide antibiotics LI-FO3, FO4, FO5, FO7 and FO8, produced by Bacillus polymyxa. Isolation and characterization. J. Antibiot. 40, 1506–1514.

    CAS  PubMed  Google Scholar 

  • Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M.C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl. Environ. Microbiol. 66, 5213–5220.

    Article  PubMed  Google Scholar 

  • Leifert, C., H. Li, S. Chidburee, S. Hampson, S. Workman, D. Sigee, H.A.S. Epton, and A. Harbour. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumillus CL45. J. Appl. Bacteriol. 78, 97–108.

    CAS  PubMed  Google Scholar 

  • Lisboa, M.P., D. Bonatto, D. Bizani, J.A.P. Henriques, and A. Brandelli. 2006. Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic Forest. Int. Microbiol. 9, 111–118.

    CAS  PubMed  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 267–275.

    Google Scholar 

  • Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of poreforming lipopeptides: Biological and physicochemical properties. Toxicology 87, 151–174.

    Article  CAS  PubMed  Google Scholar 

  • Maquelin, K., C. Kirschner, L.P. Choo-Smith, N. van den Braak, H.P. Endtz, D. Naumann, and G.J. Puppels. 2002. Identification of medically relevant microorganisms by vibrational spectroscopy. J. Microbiol. Methods 51, 255–271.

    Article  CAS  PubMed  Google Scholar 

  • Matos, D.M.S. and M.L.A. Bovi. 2002. Understanding the threats to biological diversity in southeastern Brazil. Biodiv. Conserv. 11, 1747–1758.

    Article  Google Scholar 

  • Moore, S. and W.H. Stein. 1957. A modified ninhidrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211, 907–913.

    Google Scholar 

  • Motta, A.S. and A. Brandelli. 2002. Characterization of an antibacterial peptide produced by Brevibacterium linens. J. Appl. Microbiol. 92, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Motta, A.S. and A. Brandelli. 2009. Properties and antimicrobial activity of the smear surface cheese coryneform bacterium Brevibacterium linens. Eur. Food Res. Technol. 227, 1299–1306.

    Article  Google Scholar 

  • Motta, A.S., F.S. Cannavan, S.M. Tsai, and A. Brandelli. 2007. Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch. Microbiol. 188, 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento, A.M.A., L. Cursino, H. Gonąlves-Dornelas, A. Reis, E. Charton-Souza, and M.A. Marini. 2003. Antibiotic-resistant Gram-negative bacteria in birds from the Brazilian Atlantic forest. Condor 105, 358–361.

    Article  Google Scholar 

  • Oscáriz, J.C. and A.G. Pisabarro. 2000. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J. Appl. Microbiol. 89, 361–369.

    Article  PubMed  Google Scholar 

  • O’sullivan, L., R.P. Ross, and C. Hill. 2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84, 593–604.

    Article  PubMed  Google Scholar 

  • Pabel, C., J. Vater, C. Wilde, P. Franke, J. Hofemeister, B. Adler, G. Bringmann, J. Hacker, and U. Hentschel. 2003. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar. Biotechnol. 5, 424–434.

    Article  CAS  PubMed  Google Scholar 

  • Riley, M.A. and J.E. Wertz. 2002. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137.

    Article  CAS  PubMed  Google Scholar 

  • Romero, D., A. De Vicente, R.H. Rakotoaly, S.E. Dufour, J.W. Veening, E. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot, and A. Perez-Garcia. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Pathogen Interact. 20, 430–440.

    Article  CAS  Google Scholar 

  • Romero, D., A. Pérez-Garcia, M.E. Rivera, F.M. Cazoela, and A. Vicente. 2004. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery milder fungus Podospheara fusca. Appl. Microbiol. Biotechnol. 64, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, A., T. Stachelhaus, and M.A. Marahiel. 1998. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 257, 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Souto, G.I., O.S. Correa, M.S. Montecchia, N.L. Kerber, N.L. Pucheu, M. Bachur, and A.F. Garcia. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J. Appl. Microbiol. 97, 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  • Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Stein, T. 2008. Whole-cell matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of bacteriocin/lanthibiotic-producing bacteria. Rapid Commun. Mass Spectr. 22, 1146–1152.

    Article  CAS  Google Scholar 

  • Sutyak, K.E., R.E. Wirawan, A.A. Aroucheva, and M.L. Chikindas. 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104, 1067–1074.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Tsuge, K., T. Akiyama, and M. Shoda. 2001. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 183, 6265–6273.

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Satuber, N. and S. Scherer. 1994. Isolation and characterization of linocin M18, a bacteriocin produced by Brevibacterium linens. Appl. Environ. Microbiol. 60, 3809–3814.

    Google Scholar 

  • Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S.S. Cameotra. 2002. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68, 6210–6219.

    Article  CAS  PubMed  Google Scholar 

  • Winteringham, F.P.W. 2008. Fate and significance of chemical pesticides: an appraisal in the context of integrated control. EPPO Bull. 5, 65–71.

    Article  Google Scholar 

  • Yakimov, M.M., K.N. Timmis, V. Wray, and H.L. Fredrickson. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706–1713.

    CAS  PubMed  Google Scholar 

  • Yao, S., X. Gao, N. Fuchsbauer, W. Hillen, J. Vater, and J. Wang. 2003. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr. Microbiol. 47, 272–277.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S.Y., H.X. Wang, and T.B. Ng. 1999. First chromatographic isolation from French bean legumes and demonstration of its antifungal activity. Biochem. Biophys. Res. Commun. 263, 130–134.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Biol. Control 91, 181–187.

    CAS  Google Scholar 

  • Yu, G.Y., J.B. Sinclair, G.L. Hartman, and B.L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34, 955–963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitez, L.B., Velho, R.V., Lisboa, M.P. et al. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol. 48, 791–797 (2010). https://doi.org/10.1007/s12275-010-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0164-0

Keywords

Navigation