Skip to main content
Log in

Lie Symmetries and Exact Solutions of KdV–Burgers Equation with Dissipation in Dusty Plasma

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article investigates nonlinear behavior of ion acoustic waves in a plasma with superthermal electrons and isothermal positrons. We consider the KdV–Burgers equation with dissipation in dusty plasmas and construct Lie symmetries, infinitesimal generators and commutative relations under invariance property of Lie groups of transformations. The adjoint relations and invariant functions lead to one dimensional optimal system. We derive similarity variables by using Lie group analysis, where the KdV–Burgers equation reduces in over determined equations, which provide exact solutions. The solutions are absolutely new and more general than previous results (Fan et al. in Phys Lett A 17:376–380, 2001; Feng and Wang in Phys Lett A 308:173–178, 2003; Cimpoiasu in Roam J Phys 59:617–624, 2014; Arora and Chauhan in Int J Appl Comput Math 5:1–13, 2019) as that contain both the arbitrary functions \(f_1(t)\) and \(f_2(t)\) as well as arbitrary constants. Due to existence of arbitrary constants and functions that may describe rich physical behavior. We discuss these solutions corporeally with their numerical simulation. Consequently, parabolic, elastic multi-soliton, compacton and their annihilation profiles are discussed systematically to make these findings more worthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The manuscript has no associated data.

References

  1. Pakzad, H.R.: Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons. Astrophys. Space Sci. 331, 169–174 (2011)

    MATH  Google Scholar 

  2. Tribeche, M., Boubakour, N.: Small amplitude ion-acoustic double layers in a plasma with superthermal electrons and thermal positrons. Phys. Plasmas 16, 084502 (2009)

    MATH  Google Scholar 

  3. Adhikary, N.C.: Effect of viscosity on dust-ion acoustic shock wave in dusty plasma with negative ions. Phys. Lett. A 376, 1460–1464 (2012)

    MATH  Google Scholar 

  4. Michael, M., Willington, N.T., Jayakumar, N., Sebastian, S., Sreekala, G., Venugopal, C.: Korteweg–deVries–Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions. J. Theor. Appl. Phys. 10, 289–296 (2016)

    Google Scholar 

  5. Ghai, Y., Kaur, N., Singh, K., Saini, N.S.: Dust acoustic shock waves in magnetized dusty plasma. Plasma Sci. Technol. 20, 074005 (2018)

    Google Scholar 

  6. Parkes, E.J.: Exact solutions to the two-dimensional Korteweg–de Vries–Burgers equation. J. Phys. A: Math. Gen. 27, L497–L501 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Fan, E., Zhang, J., Hon, B.Y.C.: A new complex line soliton for the two-dimensional KdV–Burgerss equation. Phys. Lett. A 17, 376–380 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Feng, Z., Wang, X.: The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation. Phys. Lett. A 308, 173–178 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cimpoiasu, R.: Symmetry reduction and new wave solutions for the 2D Burger Kortweg–de Vries equation. Roam. J. Phys. 59, 617–624 (2014)

    Google Scholar 

  10. Arora, R., Chauhan, A.: Lie symmetry analysis and some exact solutions of (2+1)-dimensional KdV–Burgers equation. Int. J. Appl. Comput. Math. 5, 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Samanta, U.K., Chatterjee, P., Mej, M.: Soliton and shocks in pair ion plasma in presence of superthermal electron. Astrophys. Space Sci. 345, 291–296 (2013)

    MATH  Google Scholar 

  12. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996–998 (1966)

    Google Scholar 

  13. Seadawy, A.R.: Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas. Pramana J. Phys. 89, 1–11 (2017)

    Google Scholar 

  14. Seadawy, A.R.: Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput. Math. Appl. 71, 201–212 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Johnson, R.S.: A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49–60 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Benney, D.J.: Long waves on liquid films. Math. Phys. 45, 150–155 (1966)

    MathSciNet  MATH  Google Scholar 

  17. Johnson, R.S.: Shallow water waves on a viscous fluid-the undular bore. Phys. Fluids 15, 1693–1699 (1972)

    MATH  Google Scholar 

  18. Gao, G.: A theory of interaction between dissipation and dispersion of turbulence. Sci. Sin. (Ser. A) 28, 616–627 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Wijngaarden, L.V.: On the motion of gas bubbles in a perfect fluid. Ann. Rev. Fluid Mech. 4, 369–373 (1972)

    Google Scholar 

  20. Grad, H., Hu, P.N.: Unified shock profile in a plasma. Phys. Fluids 10, 2596–2602 (1967)

    Google Scholar 

  21. Hu, P.N.: Collisional theory of shock and nonlinear waves in a plasma. Phys. Fluids 15, 854–864 (1972)

    Google Scholar 

  22. Liu, S.D., Liu, S.K.: KdV–Burgers equation modelling of turbulence. Sci. Sin. Ser. A 35, 576–586 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Yu, Y., Ma, H.C.: Exact solutions of the combined KdV–Burgers equation with variable coefficients. Appl. Math. Comput. 215, 3534–3540 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Alharbi, A.R., Almatrafi, M.B., Seadawy, A.R.: Construction of the numerical and analytical wave solutions of the Joseph–Egri dynamical equation for the long waves in nonlinear dispersive systems. Int. J. Mod. Phys. B 34, 2050289 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Almatrafi, M.B., Alharbi, A.R., Seadawy, A.R.: Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves. J. King Saud Univ. Sci. 33, 101375 (2021)

    Google Scholar 

  26. Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R.: Dispersive of propagation wave structures to the Dullin–Gottwald–Holm dynamical equation in a shallow water waves. Chin. J. Phys. 68, 348–364 (2020)

    MathSciNet  Google Scholar 

  27. Rizvi, S.T.R., Seadawy, A.R., Ali, I., Bibi, I., Younis, M.: Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers. Mod. Phys. Lett. B 34, 2050399 (2020)

    MathSciNet  Google Scholar 

  28. Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrödinger equation in nonlinear optics. Mod. Phys. Lett. B 33, 1950203 (2019)

    Google Scholar 

  29. Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two core optical fibers. Phys. A 529, 121330 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Seadawy, A.R., Lu, D., Iqbal, M.: Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana J. Phys. 93, 10 (2019)

    Google Scholar 

  31. Lu, D., Seadawy, A.R., Iqbal, M.: Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys. 11, 1161–1171 (2018)

    Google Scholar 

  32. Özkan, Y.S., Yaşar, E., Seadawy, A.R.: On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan equation. Phys. Scr. 95, 085205 (2020)

    Google Scholar 

  33. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation. Phys. Scr. 95, 065220 (2020)

    Google Scholar 

  34. Hu, X., Li, Y., Chen, Y.: A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 56, 053504 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Raja Sekhar, T., Satapathy, P.: Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72, 1436–1443 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)

    MATH  Google Scholar 

  37. Kumar, M., Tiwari, A.K., Kumar, R.: Some more solutions of Kadomtsev–Petviashvili equation. Comput. Math. Appl. 74, 2599–2607 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  39. Kumar, M., Tanwar, D.V., Kumar, R.: On closed form solutions of (2+1)-breaking soliton system by similarity transformations method. Comput. Math. Appl. 75, 218–234 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Kumar, M., Tanwar, D.V.: Lie symmetry reductions and dynamics of solitary wave solutions of breaking soliton equation. Int. J. Geom. Methods Mod. Phys. 16, 1950110 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Kumar, M., Tanwar, D.V.: On some invariant solutions of (2+1)-dimensional Korteweg–de Vries equations. Comput. Math. Appl. 76, 2535–2548 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Kumar, M., Tanwar, D.V.: Lie symmetries and invariant solutions of (2+1)-dimensional breaking soliton equation. Pramana J. Phys. 94, 1–10 (2020)

    Google Scholar 

  43. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries and dynamics of exact solutions of dissipative Zabolotskaya–Khokhlov equation in nonlinear acoustics. Eur. Phys. J. Plus 135, 520 (2020)

    Google Scholar 

  44. Tanwar, D.V., Kumar, M.: Lie symmetries, exact solutions and conservation laws of the Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Dyn. 106, 3453–3468 (2021)

    Google Scholar 

  45. Li, J., Zhou, Y.: Exact solutions in invariant manifolds of some higher-order models describing nonlinear waves. Qual. Theory Dyn. Syst. 18, 183–199 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Chang, L., Liu, H., Zhang, L.: Symmetry reductions, dynamical behavior and exact explicit solutions to a class of nonlinear shallow water wave equation. Qual. Theory Dyn. Syst. 19, 35 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn. Syst. 21, 24 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Tanwar, D.V.: Optimal system, symmetry reductions and group-invariant solutions of (2+1)-dimensional ZK-BBM equation. Phys. Scr. 96, 065215 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dig Vijay Tanwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, D.V., Wazwaz, AM. Lie Symmetries and Exact Solutions of KdV–Burgers Equation with Dissipation in Dusty Plasma. Qual. Theory Dyn. Syst. 21, 164 (2022). https://doi.org/10.1007/s12346-022-00692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00692-w

Keywords

Navigation