Skip to main content

Advertisement

Log in

Characterizing Quadratic Convection and Electromagnetically Induced Flow of Couple Stress Fluids in Microchannels

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the effects of quadratic convection on the electro-magneto-hydrodynamically driven flow of couple stress fluid in a microchannel. The integration of quadratic convection effects and electro-magnetic hydrodynamics in microchannels offers high potential for advancing microfluidic technologies and opening new avenues of innovation. In microfluidic systems, the couple stress fluids describe more accurately the flow mechanisms. The current mathematical modeling offers more details on the impacts of viscous dissipation and joule heating. Analytical series solutions for the temperature and velocity profiles are used with a homotopy perturbation technique. The impacts of all the parameters are explored using tables and graphs. The dynamics of velocity and temperature distribution are analyzed in detail. Furthermore, the Nusselt number values are computed and shown using funnel charts. From the graphical results it is concluded that the simultaneous impact of quadratic convection and thermal Grashof number enhances the entire velocity profile over the whole channel. The velocity and temperature profile are also observed to increase with increasing Brinkman number. The thermal profile is considerably increased by the Hartmann number, the Grashof number, and the quadratic convection parameter. The thermal profile always has a peak near the center of the channel. The thermal profile is reduced by the couple stress fluid variable parameter. The present study can be of assistance to novel advancements in various fields such as lab-on-a-chip devices, chemical synthesis, and thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(\underline{u}\) :

Velocity vector

\(\underline{X},\underline{Y},\underline{Z}\) :

Cartesian coordinate system

\(\lambda ,\mu \) :

Coefficients of viscosity

\({\varvec{c}}\) :

Body couple per unit mass

\(\eta \) :

Coefficient of couple stress viscosity

\(\underline{p}\) :

Pressure

\(g\) :

Gravity

\({\beta }_{l},{\beta }_{n}\) :

Thermal and quadratic expansion coefficients

\(\underline{T}\) :

Temperature

\(\rho \) :

Density

\(t{\prime}\) :

Time

F:

Body force

\(\kappa \) :

Thermal conductivity

\({h}_{c}\) :

Specific heat capacity

\({h}_{f}\) :

Heat flux vector

\(\sigma \) :

Electrical conductivity

\(\overrightarrow{\mathrm{E}}\) :

Electrical field

\(\nu \) :

Kinematic viscosity

\(\gamma \) :

Hartmann number

\({\xi }_{e}\) :

Electrical strength

\({\xi }_{c}\) :

Couple stress fluid parameter

\({\xi }_{1}\) :

Thermal Grashof number

\({\xi }_{2}\) :

Quadratic thermal convection parameter

\(\Omega \) :

Pressure gradient parameter

\(\beta \) :

Brinkman number

\({\zeta }_{1}\) :

Heat generation impact

\({\zeta }_{2}\) :

Ratio between heat conduction and Joule heating

\({D}_{h}\) :

Hydraulic diameter

\(N\) :

Nusselt number

\(\varepsilon \) :

Embedded parameter

\(\mathop{L}\limits^{\leftrightarrow} _{u} ,\mathop{L}\limits^{\leftrightarrow} _{T}\) :

Linear operator

References

  1. Laser, D.J., Santiago, J.G.: A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004). https://doi.org/10.1088/0960-1317/14/6/r01

    Article  Google Scholar 

  2. Karniadakis, G.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York, NY (2005)

    Google Scholar 

  3. West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A., Berney, H.: Application of magneto hydrodynamic actuation to continuous flow chemistry. Lab Chip 2, 224–230 (2002). https://doi.org/10.1039/b206756k

    Article  Google Scholar 

  4. Noman, M., Wasim, A., Ali, M., Jahanzaib, M., Hussain, S., Ali, H.M.K., Ali, H.M.: An investigation of a solar cooker with parabolic trough concentrator. Case Stud. Therm. Eng. 14, 100436 (2019)

    Article  Google Scholar 

  5. Bashir, M.A., Giovannelli, A., Ali, H.M.: Design of high-temperature solar receiver integrated with short-term thermal storage for dish-micro gas turbine systems. Sol. Sol. Energy. 190, 156–166 (2019)

    Article  Google Scholar 

  6. Sajawal, M., Rehman, T.U., Ali, H.M., Sajjad, U., Raza, A., Bhatti, M.S.: Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater. Case Stud. Therm. Eng. 15, 100543 (2019)

    Article  Google Scholar 

  7. Ali, H.M.: Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems-a comprehensive review. Sol. Energy 197, 163–198 (2020)

    Article  Google Scholar 

  8. Bhatti, M.M., Öztop, H.F., Ellahi, R., Sarris, I.E., Doranehgard, M.H.: Insight into the investigation of diamond (C) and Silica (SiO2) nanoparticles suspended in water-based hybrid nanofluid with application in solar collector. J. Mol. Liq. 357, 119134 (2022)

    Article  Google Scholar 

  9. Goren, S.L.: On free convection in water at 4 °C. Chem. Eng. Sci. 21, 515–518 (1966). https://doi.org/10.1016/0009-2509(66)85065-0

    Article  Google Scholar 

  10. RamReddy, C., Naveen, P.: Analysis of activation energy in quadratic convective flow of a micropolar fluid with chemical reaction and suction/injection effects. Multidiscip. Model. Mater. Struct. 16, 169–190 (2019). https://doi.org/10.1108/mmms-12-2018-0217

    Article  Google Scholar 

  11. Al-Kouz, W., Mahanthesh, B., Alqarni, M.S., Thriveni, K.: A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations. Int. Commun. Heat Mass Transf. 126, 105364 (2021)

    Article  Google Scholar 

  12. Fatunmbi, E.O., Okoya, S.S.: Quadratic mixed convection stagnation-point flow in hydromagnetic Casson nanofluid over a nonlinear stretching sheet with variable thermal conductivity. Defect Diffus. For. 409, 95–109 (2021). https://doi.org/10.4028/www.scientific.net/ddf.409.95

    Article  Google Scholar 

  13. Mallawi, F.O., Ullah, M.Z.: Multiple slip impact on the Darcy–forchheimer hybrid nano fluid flow due to quadratic convection past an inclined plane. Mathematics 9, 2934 (2021). https://doi.org/10.3390/math9222934

    Article  Google Scholar 

  14. Balamurugan, R., Vanav Kumar, A.: Unsteady Casson fluid flow past a stretching sheet subject to non linear (quadratic) free convection along with suction. In: Lecture Notes in Mechanical Engineering. pp. 191–207. Springer Singapore, Singapore (2022)

  15. Ali, B., Ahammad, N.A., Awan, A.U., Guedri, K., Tag-ElDin, E.M., Majeed, S.: Dynamics of rotating micropolar fluid over a stretch surface: the case of linear and quadratic convection significance in thermal management. Nanomaterials 12, 3100 (2022). https://doi.org/10.3390/nano12183100

    Article  Google Scholar 

  16. Zhang, L., Tariq, N., Bhatti, M.M.: Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach. J. Taibah Univ. Sci. 17(1), 2183702 (2023). https://doi.org/10.1080/16583655.2023.2183702

    Article  Google Scholar 

  17. Al-Habahbeh, O.M., Al-Saqqa, M., Safi, M., Abo Khater, T.: Review of magneto hydrodynamic pump applications. Alex. Eng. J. 55, 1347–1358 (2016). https://doi.org/10.1016/j.aej.2016.03.001

    Article  Google Scholar 

  18. Wang, Y.-N., Fu, L.-M.: Micropumps and biomedical applications—a review. Microelectron. Eng. 195, 121–138 (2018)

    Article  Google Scholar 

  19. Hosseini, H.R., Nikookar, H., Yesiloz, G., Naseh, M., Mohammadi, M.: An overview on micropumps, micromixers, and their applications in bioprocess. In: Advances in Bioenergy and Microfluidic Applications. pp. 365–386. Elsevier (2021)

  20. Chakraborty, D., Chakraborty, S.: Microfluidic transport and micro-scale flow physics: an overview. In: Microfluidics and Microfabrication. pp. 1–85. Springer US, Boston, MA (2010)

  21. Kundu, B., Saha, S.: Review and analysis of electro-magneto hydrodynamic flow and heat transport in micro channels. Energies 15, 7017 (2022). https://doi.org/10.3390/en15197017

    Article  Google Scholar 

  22. Bhatti, M.M., Michaelides, E.E.: Oldroyd 6-constant Electro-magneto-hydrodynamic fluid flow through parallel micro-plates with heat transfer using Darcy-Brinkman-Forchheimer model: a parametric investigation. Math. Eng. 5, 1–19 (2023). https://doi.org/10.3934/mine.2023051

    Article  MathSciNet  Google Scholar 

  23. Venkatadri, K.: Hydromagneto quadratic natural convection on a lid driven square cavity with isothermal and non-isothermal bottom wall. Eng. Comput. 34(8), 2463–2478 (2017). https://doi.org/10.1108/ec-06-2017-0204

    Article  Google Scholar 

  24. Patil, P.M., Kulkarni, M.: A numerical study on MHD double diffusive nonlinear mixed convective nanofluid flow around a vertical wedge with diffusion of liquid hydrogen. J. Egypt. Math. Soc. (2021). https://doi.org/10.1186/s42787-021-00133-8

    Article  MathSciNet  Google Scholar 

  25. Sabu, A.S., Mackolil, J., Mahanthesh, B., Mathew, A.: Nanoparticle aggregation kinematics on the quadratic convective magneto hydrodynamic flow of nanomaterial past an inclined flat plate with sensitivity analysis. Proc. Inst. Mech. Eng. Part E J Process. Mech. Eng. 236, 1056–1066 (2022). https://doi.org/10.1177/09544089211056235

    Article  Google Scholar 

  26. Gamachu, D., Ibrahim, W., Bijiga, L.K.: Nonlinear convection unsteady flow of electro-magneto hydrodynamic Sutter by hybrid nano fluid in the stagnation zone of a spinning sphere. Results Phys. 49, 106498 (2023). https://doi.org/10.1016/j.rinp.2023.106498

    Article  Google Scholar 

  27. Jiann, L.Y., Zin, N.A.M., Rawi, N.A., Ilias, M.R., Shafie, S.: Comparative study of quadratic mixed convection MHD Carreau fluid flow on cylinder and flat plate with mass transition. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08040-z

    Article  Google Scholar 

  28. Salmi, T.O., Mikkola, J.-P., Warna, J.P.: Chemical Reaction Engineering and Reactor Technology. CRC Press, Boca Raton, FL (2011)

    Google Scholar 

  29. Si, D., Jian, Y.: Electro magneto hydrodynamic (EMHD) micro pump of Jeffrey fluids through two parallel micro channels with corrugated walls. J. Phys. D Appl. Phys. 48, 085501 (2015). https://doi.org/10.1088/0022-3727/48/8/085501

    Article  Google Scholar 

  30. Shashikumar, N.S., Sindhu, S., Madhu, M., Gireesha, B.J.: Second law analysis of MHD Carreau fluid flow through a microchannel with thermal radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2060532

    Article  Google Scholar 

  31. Bhatti, M.M., Bég, O.A., Ellahi, R., Abbas, T.: Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing a non-Darcy porous medium: homotopy perturbation method study. Qual. Theory Dyn. Syst. (2022). https://doi.org/10.1007/s12346-022-00625-7

    Article  MathSciNet  Google Scholar 

  32. Rehman, A.U., Riaz, M.B., Atangana, A., Jarad, F., Awrejcewicz, J.: Thermal and concentration diffusion impacts on MHD Maxwell fluid: a generalized Fourier’s and Fick’s perspective. Case Stud. Therm. Eng. 35, 102103 (2022). https://doi.org/10.1016/j.csite.2022.102103

    Article  Google Scholar 

  33. Bhatti, M.M., Doranehgard, M.H., Ellahi, R.: Electro-magneto-hydrodynamic eyring-powell fluid flow through micro-parallel plates with heat transfer and non-darcian effects. Math. Methods Appl. Sci. 46, 11642–11656 (2023). https://doi.org/10.1002/mma.8429

    Article  MathSciNet  Google Scholar 

  34. Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9, 1709 (1966). https://doi.org/10.1063/1.1761925

    Article  Google Scholar 

  35. Ahmad, F., Nazeer, M., Ali, W., Saleem, A., Sarwar, H., Suleman, S., Abdelmalek, Z.: Analytical study on couple stress fluid in an inclined channel. Sci. Iran. 28(4), 2164–2175 (2021). https://doi.org/10.24200/sci.2021.55579.4291

    Article  Google Scholar 

  36. Gorthi, S.R., Mondal, P.K., Biswas, G., Sahu, K.C.: Electro-capillary filling in a microchannel under the influence of magnetic and electric fields. Can. J. Chem. Eng. 99, 725–741 (2021). https://doi.org/10.1002/cjce.23876

    Article  Google Scholar 

  37. Siva, T., Jangili, S., Kumbhakar, B., Mondal, P.K.: Unsteady electro magneto hydrodynamic flow of couple stress fluid through a microchannel: a theoretical analysis. Eur. J. Mech. B. Fluids 95, 83–93 (2022). https://doi.org/10.1016/j.euromechflu.2022.04.007

    Article  MathSciNet  Google Scholar 

  38. Cowin, S.C.: The theory of polar fluids. In: Advances in Applied Mechanics. pp. 279–347. Elsevier (1974)

  39. Condiff, D.W., Dahler, J.S.: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842 (1964). https://doi.org/10.1063/1.1711295

    Article  MathSciNet  Google Scholar 

  40. Eringen, A.C.: Theory of micropolar elasticity. In: Micro Continuum Field Theories. pp. 101–248. Springer New York, New York, NY (1999)

  41. Hajesfandiari, A., Dargush, G.F., Hadjesfandiari, A.R.: Size-dependent fluid dynamics with application to lid-driven cavity flow. J. Nonnewton. Fluid Mech. 223, 98–115 (2015). https://doi.org/10.1016/j.jnnfm.2015.05.008

    Article  MathSciNet  Google Scholar 

  42. Hajesfandiari, A., Hadjesfandiari, A.R., Dargush, G.F.: Couple stress Rayleigh-Bénard convection in a square cavity. J. Nonnewton. Fluid Mech. 259, 91–110 (2018). https://doi.org/10.1016/j.jnnfm.2018.03.008

    Article  Google Scholar 

  43. Nazeer, M., Hussain, F., Ahmad, F., Khan, M.I., Gohar, F., Malik, M.Y., Sun, T.-C., Saleem, A.: Numerical analysis of multiphase flow of couple stress fluid thermally effected by moving surface. Int. J. Mod. Phys. B 35, 2150188 (2021). https://doi.org/10.1142/s0217979221501885

    Article  MathSciNet  Google Scholar 

  44. Xiong, P.-Y., Nazeer, M., Hussain, F., Ijaz Khan, M., Saleem, A., Qayyum, S., Chu, Y.-M.: Two-phase flow of couple stress fluid thermally effected slip boundary conditions: numerical analysis with variable liquids properties. Alex. Eng. J. 61, 3821–3830 (2022). https://doi.org/10.1016/j.aej.2021.09.012

    Article  Google Scholar 

  45. Kumar Mondal, P., Wongwises, S.: Magneto-hydrodynamic (MHD) micropump of nanofluids in a rotating microchannel under electrical double-layer effect. Proc. Inst. Mech. Eng. Part E J Process. Mech. Eng. 234, 318–330 (2020). https://doi.org/10.1177/0954408920921697

    Article  Google Scholar 

  46. Bhatti, M.M., Ishtiaq, F., Ellahi, R., Sait, S.M.: Novel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium under the influence of an induced magnetic field and heat transfer. Mathematics 11, 2284 (2023). https://doi.org/10.3390/math11102284

    Article  Google Scholar 

  47. Sikdar, P., Datta, A., Biswas, N., Sanyal, D.: Identifying improved microchannel configuration with triangular cavities and different rib structures through evaluation of thermal performance and entropy generation number. Phys. Fluids 32, 033601 (2020). https://doi.org/10.1063/1.5137842

    Article  Google Scholar 

  48. Datta, A., Debbarma, D., Biswas, N., Sanyal, D., Das, A.K.: The role of flow structures on the thermal performance of microchannels with wall features. J. Therm. Sci. Eng. Appl. 13, 1–19 (2021). https://doi.org/10.1115/1.4047709

    Article  Google Scholar 

  49. Biswas, N., Datta, A., Manna, N.K., Mandal, D.K., Gorla, R.S.R.: Thermo-bioconvection of oxytactic microorganisms in porous media in the presence of magnetic field. Int. J. Numer. Methods Heat Fluid Flow 31(5), 1638–1661 (2021). https://doi.org/10.1108/hff-07-2020-0410

    Article  Google Scholar 

  50. Wang, L., Jian, Y., Liu, Q., Li, F., Chang, L.: Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel plates. Colloids Surf. A Phys. Chem. Eng. Asp 494, 87–94 (2016). https://doi.org/10.1016/j.colsurfa.2016.01.006

    Article  Google Scholar 

  51. Stathis Michaelides, E.: Nanofluidics: Thermodynamic and Transport Properties. Springer, New York, NY (2014)

    Book  Google Scholar 

Download references

Funding

Lijun Zhang and M. M. Bhatti are supported by the National Natural Science Foundation of China No. 12172199.

Author information

Authors and Affiliations

Authors

Contributions

M. M. Bhatti, and Lijun Zhang, provided the concept and edited the draft of manuscript. Lijun Zhang and Efstathios E. Michaelides conducted the literature review and wrote the first draft of the manuscript. Efstathios E. Michaelides and R. Ellahi edited the draft of the manuscript.

Corresponding author

Correspondence to M. M. Bhatti.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

N/A.

Informed Consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Bhatti, M.M., Michaelides, E.E. et al. Characterizing Quadratic Convection and Electromagnetically Induced Flow of Couple Stress Fluids in Microchannels. Qual. Theory Dyn. Syst. 23, 35 (2024). https://doi.org/10.1007/s12346-023-00883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00883-z

Keywords

Navigation