Skip to main content

Advertisement

Log in

On the statics of No-Tension masonry-like vaults and shells: solution domains, operative treatment and numerical validation

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

In the paper, structural analysis of masonry vaults is based on the fundamental assumption that the material cannot resist tensile stresses. For the vault to work as a No-Tension (NT) structure, it is recognized that a membrane surface completely included in the thickness of the vault exists [Heyman (1977) Equilibrium of shell structures. Oxford University Press, Oxford], designed in way to resist applied loads by purely compressive membrane forces. After reducing the problem to a plane-stress problem, the stress function Ψ(x,y) is introduced, like in the classical Pucher’s approach. Statically admissible solutions are proven to be ruled by the non-homogeneous Monge-Ampere equation. Anyway purely admissible stress fields often yield non-compatible and non-credible results with reference to fractures and strains. A path aimed at generating sets of solutions related to given load shapes is outlined, as a preliminary basis for solutions fully accomplishing not only equilibrium and admissibility, but also compatibility with strains and fractures. Further analytical developments, set up of operative procedures, validation by means of numerical campaign, investigation of special characters of approximations when dealing with particular load shapes, i.e. all topics related to operative features of the proposed approach are presented in the second part of the paper. Starting from the path outlined for identifying solution domains, a constrained optimization is set up to minimize a suitably defined square error function calculated between the assigned objective load function and the membrane surface expression, under the condition that the solution membrane function is contained in the vault profile. Some analytical management is needed in order to reduce the dependence of the problem on the number of parameters, and to partially simplify and expedite the subsequent numerical simulation. Thereafter, ad hoc calculus codes are built up for implementing the problem and performing the numerical investigation. Final validation of the approach is given by demonstrating, with some numerical applications, the effectiveness of the method even for load shapes difficult to be handled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andrei N (2007) Convex functions. Adv Model Optim 9(2):257–267

    MathSciNet  MATH  Google Scholar 

  2. Baratta A, Corbi I (2004) Iterative procedure in no-tension 2D problems: theoretical solution and experimental applications. In: Sih GC, Nobile L (eds) Restoration, recycling and rejuvenation technology for engineering and architecture application. Aracne Ed, Bologna, pp 67–75 [ISBN 88-7999-765-3]

  3. Baratta A, Corbi I (2006) A theoretical and experimental stress distribution in reinforced no-tension walls. In: Lourenço PB, Roca P, Modena C, Agrawal S (eds) Structural analysis of historical constructions, vol 2. New Delhi, India, pp 1289–1296

  4. Baratta A, Corbi I (2006) On the reinforcement of masonry walls by means of FRP provisions. In: Mirmiran A, Nanni A (eds) “Composites in civil engineering” CICE 2006, International Institute for FRP in Construction, Miami, USA, pp 371–374

  5. Baratta A, Corbi O (2005) On variational approaches in NRT continua. Int J Solids Struct 42:5307–5321

    Article  MathSciNet  MATH  Google Scholar 

  6. Baratta A, Corbi O (2005) Relationships of L.A. theorems for NRT structures by means of duality. Theor Appl Fract Mech 44:261–274

    Article  Google Scholar 

  7. Baratta A, Corbi O (2007) Stress analysis of masonry vaults and static efficacy of FRP repairs. Int J Solids Struct 44(24):8028–8056

    Article  MATH  Google Scholar 

  8. Baratta A, Corbi O (2007) Duality in non-linear programming for limit analysis of NRT bodies. Struct Eng Mech 26(1):15–30

    Google Scholar 

  9. Baratta A, Corbi O (2009) Notes on statics of masonry vaults. In: Pirrotta A, Navarra G (eds) MDP07, International symposium on recent advances in mechanics, dynamical systems and probability theory, Patròn Editore. 3–6 June, Mondello, Palermo, pp 25–36

  10. Baratta A, Corbi O (2010) On the equilibrium and admissibility coupling in NT vaults of general shape. Int J Solids Struct 47(17):2276–2284

    Article  MATH  Google Scholar 

  11. Baratta A, Corbi O (2010) An approach to masonry structural analysis by the no-tension assumption—part I: material modeling, theoretical setup, and closed form solutions. Appl Mech Rev ASME Int 63(4):040802-1/17

    Google Scholar 

  12. Baratta A, Corbi O (2010) An approach to masonry structural analysis by the no-tension assumption—part II: load singularities, numerical implementation and applications. Appl Mech Rev ASME Int 63(4):040803-1/21

    Google Scholar 

  13. Block P, Ciblac T, Ochsendorf JA (2006) Real-time limit analysis of vaulted masonry buildings. Comput Struct 84:1841–1852

    Article  Google Scholar 

  14. Boothby TE (2001) Analysis of masonry arches and vaults. Prog Struct Eng Mater 3:246–256

    Article  Google Scholar 

  15. Corbi O (2005) Il portale ad Arco Murario: Verifica della Analisi Numerica su Base Sperimentale. Ingegneria Sismica, Patròn Editore XXII (2):14–18

  16. Corbi O (2007) Consolidamento di un Arco Murario Rinforzato con Tirante Metallico: Indagine Sperimentale. Ingegneria Sismica, Patròn Editore XXIV(1):57–62

  17. Cundall PA (1988) Formulation of a three-dimensional distinct element model—part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116

    Google Scholar 

  18. Fairlie DB, Leznov AN (1995) General solutions of the Monge-Ampère equation in n-dimensional space. J Geom Phys 16(4):385–390

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher R (2000) Practical methods of optimization. Wiley, New York

    Google Scholar 

  20. Gilbarg D, Trudinger NS (2001) Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin, p 544

    MATH  Google Scholar 

  21. Gilbert M, Melbourne C (1994) Rigid-block analysis of masonry structures. Struct Eng 72(21):356–361

    Google Scholar 

  22. Heyman J (1977) Equilibrium of shell structures. Oxford University Press, Oxford, p 134

    MATH  Google Scholar 

  23. Huerta S (2001) Mechanics of masonry vaults: the equilibrium approach. In: Lourenco PB, Roca P (eds) Proceedings of historical constructions. Guimaraes, Portugal, pp 47–69

  24. Huerta S (2008) The analysis of masonry architecture: a historical approach. Archit Sci Rev 51(4):297–328

    Article  Google Scholar 

  25. Lemos JV (1997) Discrete element modeling of the seismic behaviour of stone masonry arches. In: Pande GN, Middleton J, Kralj B (eds) Computer methods in structural masonry, vol 4. E & FN Spon, London, pp 220–227

    Google Scholar 

  26. Livesley RK (1978) Limit analysis of structures formed from rigid blocks. Int J Numer Methods Eng 12(12):1853–1871

    Article  MATH  Google Scholar 

  27. Livesley RK (1992) A computational model for the limit analysis of three-dimensional masonry structures. Meccanica 27(3):161–172

    Google Scholar 

  28. Lucchesi M, Padovani C, Pasquinelli G, Zani N (1989) The maximum modulus eccentricities surface for masonry vaults and limit analysis. Math Mech Solids 4:71–87

    MathSciNet  Google Scholar 

  29. Maunder EAW (1993) Limit analysis of masonry structures based on discrete elements. In: Brebbia CA, Frewer RJB (eds) Structural repair and maintenance of historical buildings III. Computational Mechanics Publications, Southampton, pp 367–374

  30. Molins C, Roca P (1998) Capacity of masonry arches and spatial frames. J Struct Eng (ASCE) 124(6):653–663

    Article  Google Scholar 

  31. Nash SG (2011) Penalty and barrier methods. Wiley Encyclopedia of Operations Research and Management Science, Chicester

  32. O’Dwyer DW (1999) Funicular analysis of masonry vaults. Comput Struct 73(1–5):187–197

    Article  MATH  Google Scholar 

  33. Polyanin AD, Manzhirov AV (2007) Handbook of mathematics for engineers and scientists. Chapman & Hall/CRC, Boca Raton, p 1509

    MATH  Google Scholar 

  34. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton, p 451

    MATH  Google Scholar 

  35. Roberts AW, Varberg DE (1973) Convex functions. Academic Press, New York, p 300

    MATH  Google Scholar 

  36. Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A/Solids 28:209–222

    Article  MATH  Google Scholar 

  37. Ugural AC (1999) Stresses in plates and shells. McGraw-Hill WCB, USA, p 502

    Google Scholar 

  38. Ungewitter G (1890) Lehrbuch der gotischen Konstruktionen (III. Auage neu bearbaitet von K.Mohrmann ed.). T.O. Weigel Nachfolger, Leipzig

  39. Wittmann W (1879) Zur Theorie der Gewolbe. Zeitschrift fur Bauwesen 26:61–74

    Google Scholar 

Download references

Acknowledgments

The present research has been developed thanks to the financial support by the Dept. of “Protezione Civile” of the Italian Government, through the RELUIS Pool (Convention n. 823 signed 24/09/2009, Research Line n. AT2: 3), and to funds by MIUR (Italian Ministry for Education, University and Research) within a PRIN project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Baratta.

Appendices

Appendix 1

In this section the symbol “>” means that the argument is strictly larger than zero at least in a subdomain of X. Dependence on the variables (x, y) is implicit in the expressions of the functions.

Hypotheses

$$ z_{p} = \sum\limits_{i = 1}^{M} {\rho_{i} z_{pi} } ;\quad \rho_{i} \ge 0\quad \forall i = 1, \ldots ,M $$
(A1.1)

with

$$ \left\{ {\begin{array}{*{20}c} {z_{pi,xx} \ge 0;\quad z_{pi,yy} \ge 0} \hfill \\ {H_{{z_{pi} }} = p_{i} \ge 0} \hfill \\ \end{array} } \right.\quad \forall i = 1, \ldots ,M $$
(A1.2)

it follows (Thesis)

$$ H_{{z_{p} }} = z_{p,xx} z_{p,yy} - \left( {z_{p,xy} } \right)^{2} \ge 0 $$
(A1.3)

Proof

Since the Hessian operator of z i (x,y) equals p i (x,y) ≥ 0, one gets

$$ z_{pi,xx} z_{pi,yy} - \left( {z_{pi,xy} } \right)^{2} \ge 0 \Rightarrow \left\{ \begin{gathered} z_{pi,xx} \,z_{pi,yy} \ge 0 \hfill \\ \left| {z_{pi,xy} } \right| \le \sqrt {z_{pi,xx} \,z_{pi,yy} } \hfill \\ \end{gathered} \right.\quad \forall i = 1, \ldots ,M $$
(A1.4)

If p i  > 0 the relevant inequality holds strictly.

From Eq. A1.1

$$ z_{p,xx} \,z_{p,yy} - \left( {z_{p,xy} } \right)^{2} = \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\rho_{i} \rho_{j} z_{pi,xx} \,z_{pj,yy} } } - \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\rho_{i} \rho_{j} z_{pi,xy} \,z_{pj,xy} } } $$
(A1.5)

and

$$ \begin{aligned} z_{p,xx} \,z_{p,yy} - \left( {z_{p,xy} } \right)^{2} & = \sum\limits_{i = 1}^{M} {\sum\limits_{j = 1}^{M} {\rho_{i} \rho_{j} \,\left( {z_{pi,xx} \,z_{pj,yy} - z_{pi,xy} \,z_{pj,xy} } \right)} } \\ & = \sum\limits_{i = 1}^{M} {\rho_{i}^{2} \left( {z_{pi,xx} \,z_{pi,yy} - z_{pi,xy} \,z_{pi,xy} } \right)} \\ & \quad + \sum\limits_{i = 2}^{M} {\left[ {\sum\limits_{j < i} {\rho_{i} \rho_{j} \left( {z_{pi,xx} \,z_{pj,yy} \, - z_{pi,xy} \,z_{pj,xy} } \right)} + \sum\limits_{j > i} {\rho_{i} \rho_{j} \left( {z_{pi,xx} \,z_{pj,yy} - z_{pi,xy} z_{pj,xy} } \right)} } \right]} \\ \end{aligned} $$
(A1.6)

Considering that H zpi  = p i i = 1, …, M and exchanging the indices in the second term in the parentheses, one gets

$$ z_{p,xx} \,z_{p,yy} - \left( {z_{p,xy} } \right)^{2} = \sum\limits_{i = 1}^{M} {\rho_{i}^{2} p_{i} } + \sum\limits_{i = 2}^{M} {\left[ {\sum\limits_{j < i} {\rho_{i} \rho_{j} \left( {z_{pi,xx} \,z_{pj,yy} + z_{pj,xx} \,z_{pi,yy} - 2z_{pj,xy} \,z_{pi,xy} } \right)} } \right]} $$
(A1.7)

From Eq. A1.4

$$ \left. \begin{gathered} \left| {z_{pi,xy} } \right| \le \sqrt {z_{pi,xx} \,z_{pi,yy} } \hfill \\ \left| {z_{pj,xy} } \right| \le \sqrt {z_{pj,xx} \,z_{pj,yy} } \hfill \\ \end{gathered} \right\} \Rightarrow - \left| {z_{pi,xy} } \right|\left| {z_{pj,xy} } \right| \ge - \sqrt {z_{pj,xx} \,z_{pj,yy} } \sqrt {z_{pi,xx} \,z_{pi,yy} } $$
(A1.8)

whence

$$ \begin{gathered} z_{pi,xx} \,z_{pj,yy} + z_{pj,xx} z_{pi,yy} - 2z_{pj,xy} z_{pi,xy} \ge z_{pi,xx} \,z_{pj,yy} + z_{pj,xx} \,z_{pi,yy} - 2\left| {z_{pj,xy} \,z_{pi,xy} } \right| \hfill \\ \ge z_{pi,xx} \,z_{pj,yy} + z_{pj,xx} z_{pi,yy} - 2\sqrt {z_{pj,xx} \,z_{pi,xx} \,z_{pi,yy} \,z_{pj,yy} } = \left[ {\sqrt {z_{pi,xx} \,z_{pj,yy} } - \sqrt {z_{pj,xx} \,z_{pi,yy} } } \right]^{2} \ge 0 \hfill \\ \end{gathered} $$
(A1.9)

and finally, since the coefficients ρ i are non-negative

$$ z_{p,xx} \,z_{p,yy} - \left( {z_{p,xy} } \right)^{2} \ge \sum\limits_{i = 1}^{M} {\rho_{i}^{2} p_{i} } + \sum\limits_{i = 2}^{M} {\left[ {\sum\limits_{j < i} {\rho_{i} \rho_{j} \left( {\sqrt {z_{pi,xx} \,z_{pj,yy} } - \sqrt {z_{pj,xx} z_{pi,yy} } } \right)^{2} } } \right] \ge 0} $$
(A1.10)

where the first inequality holds with the sign “>” if at least on of the p i ’s is strictly larger than zero.

In the particular case that all p i ’s are null

$$ z_{p,xx} \,z_{p,yy} - \left( {z_{p,xy} } \right)^{2} \ge \sum\limits_{i = 2}^{M} {\left[ {\sum\limits_{j < i} {\rho_{i} \rho_{j} \left( {\sqrt {z_{pi,xx} \,z_{pj,yy} } - \sqrt {z_{pj,xx} z_{pi,yy} } } \right)^{2} } } \right] \ge 0}. $$
(A1.11)

Appendix 2

The set \( {\tt{S}} \) is bounded.

In fact consider that the initial point c o has finite modulus, and it is in the interior of \( {\text{S}} \), so that a number β > 0 exists such that all points in a sphere with centre c o and radius Δc > β are feasible. In other words two positive ordinates k 1 and k 2 exist such that

$$ k_{1} + \bar{z}_{1} \left( {x,y} \right) \le z_{o} \left( {x,y} \right) \le \bar{z}_{2} \left( {x,y} \right) - k_{2} \quad \forall \left( {x,y} \right) \in {\text{X}};\quad k_{1} > 0;\quad k_{2} > 0 $$
(A2.1)

with z o (x,y) = z(x,y|c o ).

Consider any direction t starting from c o and a feasible point c* ≠ c o on t in the neighbourhood of c o , with |c *c o | ≥ β. It follows that

$$ - s\left( {x,y} \right) < - s\left( {x,y} \right) + k_{2} \le z^{*} \left( {x,y} \right) - z_{o} \left( {x,y} \right) \le s\left( {x,y} \right) - k_{1} < s\left( {x,y} \right)\quad \forall \left( {x,y} \right) \in {\tt{X}};\quad k_{1} > 0;\quad k_{2} > 0 $$
(A2.2)

whence

$$ \left| {z^{*} \left( {x,y} \right) - z_{o} \left( {x,y} \right)} \right| = \left| {\sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right)} } \right| < s\left( {x,y} \right)\quad \forall \left( {x,y} \right) \in {\tt{X}} $$
(A2.3)

and

$$ {\mathbf{c}}^{*} \in {\tt{S}} \Rightarrow \mathop {\max }\limits_{{\left( {x,y} \right) \in {\tt{X}}}} \left[ {\left| {z^{*} \left( {x,y} \right) - z_{o} \left( {x,y} \right)} \right|} \right] = \Updelta z^{*} \left( {\mathbf{t}} \right) < \mathop {\max }\limits_{{\left( {x,y} \right) \in {\tt{X}}}} s\left( {x,y} \right) = s_{\max } $$
(A2.4)

Since \( {\tt{X}} \), the basis of the vault, is a closed and bounded (i.e. compact) set of \( {\tt{R}}^{2} \), and the function

$$ h_{t} \left( {x,y\left| {{\mathbf{c}}^{*} ,{\mathbf{c}}_{o} } \right.} \right) = \left| {\sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right)} } \right| $$
(A2.5)

is a continuous non-zero function on \( {\tt{X}} \), by the Weierstrass theorem a point \( \left( {x_{t}^{*} ,y_{t}^{*} } \right) \) of \( {\tt{X}} \) exists yielding a positive maximum value

$$ \Updelta z^{*} \left( {\mathbf{t}} \right) = \mathop {\max }\limits_{{\left( {x,y} \right) \in X}} \left[ {\left| {\sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right)} } \right|} \right] = \left| {\sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x_{t}^{*} ,y_{t}^{*} } \right)} } \right| > 0\quad \forall {\mathbf{t}} $$
(A2.6)

Consider any other ct [c = c o  + λ(c *  c o ), λ ≥ 0]

$$ \begin{gathered} z\left[ {x,y\left| {\mathbf{c}} \right.} \right] - z_{o} \left( {x,y} \right) = \lambda \sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right);\quad \lambda \ge 0} \hfill \\ \mathop {\max }\limits_{{\left( {x,y} \right) \in X}} \left[ {\left| {\lambda \sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right)} } \right|} \right] = \lambda \mathop {\max }\limits_{{\left( {x,y} \right) \in X}} \left[ {\left| {\sum\limits_{i = 1}^{M} {\left( {c_{i}^{*} - c_{oi} } \right)z_{i} \left( {x,y} \right)} } \right|} \right] = \lambda \Updelta z^{*} \left( {\mathbf{t}} \right) \le \mathop {\max }\limits_{{\left( {x,y} \right) \in X}} s\left( {x,y} \right) = s_{\max } \hfill \\ \end{gathered} $$
(A2.7)

One concludes that on any direction t starting from c o

$$ \lambda_{t} \le \frac{{s_{\max } }}{{\Updelta z^{*} \left( {\mathbf{t}} \right)}} $$
(A2.8)

After considering the minimum \( \Updelta z_{\min }^{*} > 0 \) along all directions t, the feasible domain remains included in the sphere with center c o and radius Λ

$$ \Uplambda = \frac{{s_{\max } }}{{\Updelta z^{*}_{\min } }} $$
(A2.9)

which is a finite number.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratta, A., Corbi, O. On the statics of No-Tension masonry-like vaults and shells: solution domains, operative treatment and numerical validation. Ann. Solid Struct. Mech. 2, 107–122 (2011). https://doi.org/10.1007/s12356-011-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-011-0022-8

Keywords

Navigation