Skip to main content

Advertisement

Log in

Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamilnadu, India

تقييم من ماء جوفيّ نوعية مع [سبسل مفسس] على فلوريد تلوث في بلّوريّة سرير صخرة مستودع جوفيّ من [متّور] منطقة, [تميلندو], هند

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Groundwater samples were collected from Mettur taluk of Salem district, Tamilnadu, India for two different seasons (pre-monsoon and post-monsoon) and analyzed for fluoride ion along with other chemical parameters. The major litho units of the study area are Charnockites, peninsular gneiss, and calc gneiss of meta-sedimentary group. The fluoride concentration ranges from 0.1 to 2.8 mg/L and 0.4 to 4.0 mg/L during pre-monsoon (PRM) and post-monsoon (POM) seasons, respectively. Results showed that collected water samples were contaminated by the presence of fluoride ion. During PRM and POM, 21% and 56% of samples recorded higher fluoride when compared with Indian Drinking Water Standard (1 mg/L) and (9% and 35%) of samples recorded higher fluoride when compared with World Health Organization tolerance limit (1.5 mg/L). The ratio of Na/Ca indicates high sodium content in groundwater enhances the dissolution of fluoride at higher pH. Hydrogeochemical facies indicates water-rock interaction as main source for high fluoride in groundwater. A positive correlation between pH, Mg, and F indicates high alkaline nature of water promotes fluoride leaching from source rocks into ground water. Factor analysis indicates hydro-geochemical processes like weathering, ion exchange, and anthropogenic contributes to groundwater chemistry. The saturation index indicates dissolution and precipitation contributes fluoride dissolution along with mixing.

Abstract

[متّور] [تلوك] من سالم منطقة, [تميلندو], هند لاثنان فصول مختلفة ([بر] ريح موسميّة وموقعة ريح موسميّة) وحلّلت ل [فلووريد يون] مع أخرى معلمات كيميائيّ. الكبريات [ليثو] وحدات من الدراسة منطقة [شرنوكيتس], صخر نايس شبه جزيري و [كلك] صخر نايس من ميتا مجموعة رسوبيّة. الفلوريد يتراوح تركيز من 0.1 إلى 2.8 [مغ/ل] و0.4 [تو] 4.0 [مغ/ل] أثناء [برم] و [بوم] فصول على التّوالي. نتيجات أبدوا أنّ لوّنت يجمع [وتر سمبل] كان بالوجود ال [فلووريد يون]. سجّل أثناء [برم] و [بوم] 21% و56% من عينات فلوريد [هيغر] [وهن كمبرد ويث] [درينك وتر] هنديّة معياريّة (1 [مغ/ل]) و(9% و35%) من عينات سجّل فلوريد [هيغر] [وهن كمبرد ويث] [وورلد هلث ورغنيزأيشن] [تولرنس ليميت] (1.5 [مغ/ل]). يشير النسبة ال [ن/ك] عال صوديوم محتوى في ماء جوفيّ يحسن الإنحلال الفلوريد في [ف.] [هيغر]. يشير سحنة مائيّ جوفيّ كيميائيّ [وتر-روك] تفاعل كمصدر رئيسيّة لفلوريد عال في ماء جوفيّ. يشير إرتباط إيجابيّة بين [ف], [مغ] و [ف], طبيعة عال قلويّة ماء يروّج فلوريد يرشح من مصدر صخورة داخل [غرووند وتر]. [فكتور نلسس] يشير يسهم عمليات [هدرو-جوشميكل] مثل [وثرينغ], [إيون-إكسشنج] و [أنثروبوجنيك] إلى ماء جوفيّ كيمياء. التشبع يشير فهرسة إنحلال وترسيب يسهم فلوريد إنحلال مع يمزج.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apha (1995) Standard methods for the examination of water and wastewater, 19th edn. APHA, Washington DC, USASS

    Google Scholar 

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. Balkema, Rotterdam, 536pp

    Google Scholar 

  • Babulal Das, Jitu Talukdar, Surashree Sarma, Biren Gohain, Robin K. Dutta, Himangshu B. Das, Subhash C. Das (2003) Fluoride and other inorganic constituents in groundwater of Guwahati, Assam, India. Curr Sci Vol.85, Paper 5

  • Balasubramanian A, Sharma KK, Sastri JCV (1985) Geoelectrical and Hydrogeochemicalevaluation of Coastal aquifers of Tambraparni basin, Tamilnadu. Geophysical Research Bull 23:203–209

    Google Scholar 

  • BIS Bureau of Indian Standards Drinking water-specification (2003) IS: 10500, New Delhi

  • Bouwer H (1978) Groundwater quality, groundwater hydrology. Kogakusha Ltd, Mc.Graw-Hill, pp 339–375

    Google Scholar 

  • Carrillo-Rivera JJ, Cardona A, Edmunds WM (2002) Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater:San Luis Potosi basin, Mexico. J Hydrol 261:24–47

    Article  Google Scholar 

  • Craig E, Anderson MP (1979) The effects of urbanization of ground water quality. A case study of ground water ecosystems. Environ Conserv 30(2):104–130

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, NewYork

    Google Scholar 

  • Dhiman SD, Keshari AK (2006) GIS assisted inverse geochemical modeling for plausible phase transfers in aquifers. Environ Geol 50:1211–1219. doi:10.1007/s00254-006-0293-2

    Article  Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the groundwater of Sri Lanka—environmental management and health. Int J Environ Stud 38:137–156

    Article  Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • EPA (1997) Public health global for fluoride in drinking water. Pesticide and environmental toxicology. Section Office of Environmental Health Hazard Assessment, California Environmental Protection Agency

  • Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. J Environ Pollut 145:839–849

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gizaw B (1996) The origin of high bicarbonate and fluoride concentrations in waters of the main Ethiopian Rift Valley. J Afr Earth Sci 22:391–402

    Article  Google Scholar 

  • Guo Q, Wang Y, Ma T, Ma R (2007) Geochemical processes controlling the elevated fluoride concentration in groundwaters of the Taiyuan Basin, Northern China. J Geochem Explor 93:1–12

    Article  Google Scholar 

  • Gupta S, Banerjee S, Saha R, Datta JK, Mondal N (2006) Fluoride geochemistry of groundwater in Birbhum, West Bengal, India. Fluoride 39:318–320

    Google Scholar 

  • Hounslow AW (1995) Water quality data: analysis and interpretation. CRC Press LLC, Lewis publishers, 397 p

    Google Scholar 

  • Jacks G, Rajagopalan K, Alveteg T, Jönsson M (1993) Genesis of high F groundwater, Southern India. App Geochem 2, Paper 3

  • Karanth KR (1987) Quality of groundwater and groundwater exploration. Tata McGraw – Hill Publishing Co.Ltd, New Delhi, pp 217–275, 437–509

    Google Scholar 

  • Karro E, Indermitte E, Saava A, Haamer K, Marandi A (2006) Fluoride occurrence in publicly supplied drinking water in Estonia. Environ Geol 50(3):389–396

    Article  Google Scholar 

  • Kim K, Jeong GY (2005) Factors influencing natural occurrence of fluoride-rich groundwaters: a case study in the southeastern part of the Korean Peninsula. Chemos 58:1399–1408

    Article  Google Scholar 

  • Kumar S, Syed A (1989) Distribution of fluoride in shallow aquifers in and around district Rohtak, Haryana state, India. In: Gupta CP, Shakeel A, Rao VVSG, Raja MT (eds) Workshop on appropriate methodologies for development and management of groundwater resources in developing countries. National Geophysical research Institute, Hyderabad, pp 33–38

    Google Scholar 

  • Kundu MC, Mandal B (2008) Assessment of potential hazards of fluoride contamination in drinking groundwater of an intensively cultivated district in West Bengal, India. Env Mon and Assess. doi:10.1007/s10661-008-0299-1

    Google Scholar 

  • Lawrence FW, Upchurch SB (1982) Identification of recharge areas using geochemical factor analysis. Groundwat 20:680–687

    Article  Google Scholar 

  • Madhnure P, Sirsikar DY, Tiwari AN, Ranjan B, Malpe DB (2007) Occurrence of fluoride in the groundwaters of Pandharkawada area, Yavatmal district, Maharashtra, India. Curr Sci 92(5):675–679

    Google Scholar 

  • Meenakshi RC (2006) Fluoride in drinking water and its removal. J Hazard Mater B137:456–463

    Article  Google Scholar 

  • Miller GT (1979) Living in the environment. Wadsworth Publishing Company, Belmond California

    Google Scholar 

  • Misra AK, Mishra A, Premraj (2006) Escalation of groundwater fluoride in the Ganga alluvial plain of India. Fluoride 39(1):35–38

    Google Scholar 

  • Moghaddam A, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56:281–287

    Article  Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Env Monit and Assess 118:435–456

    Article  Google Scholar 

  • Nanyaro JT, Aswathanarayana U, Mungere JS, Lahermo P (1984) A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. J Arf Earth Sci 2:129–140

    Google Scholar 

  • Ozsvath D (2006) Fluoride concentrations in a crystalline bedrock aquifer Marathon County. Wisconsin, Environ Geol 50:132–138

    Google Scholar 

  • Pickering WF, Slavek J, Waller P (1988) The effect of ion exchange on the solubility of fluoride compounds. Wat Air Soil Poll 39:323–336

    Google Scholar 

  • Piper AM (1994) A graphic procedure in the geochemical interpretation of water analysis. Trans Geophysics union 25:914–923

    Google Scholar 

  • Plummer LN, Jones BF, Truesdell AH (1976) WATEQF – A FORTRAN IV Version of WATEQ, A computer program for calculating chemical equilibrium of natural waters. USGS Wat Res Invest 76:13–61

    Google Scholar 

  • Rajiv Gandhi National Drinking Water Mission (RGNDWM) (1993) Prevention and control of fluorisis in India, (unpublished report)

  • Ramamohana Rao NV, Suhasini Reddy V, Navneeth Rao T, Surya prakash Rao (1996) Hydrogeochemistry of fluorine in Nalgonda district of Andhra Pradesh, India. Proc of the International Symposium on Applied Geochemistry, 255–262pp

  • Ramanaiah SV, Venkatamohan S, Rajkumar B, Sarma PN (2006) Monitoring of fluoride concentration in groundwater of Prakasham district in India: correlation with physico-chemical parameters. J Environ Sci Eng 48:129–134

    Google Scholar 

  • Robin NS (2002) Groundwater quality in Scotland: major ion chemistry of the key groundwater bodies. Sci Total Env 294:48–49

    Google Scholar 

  • Rukah YA, Alsokhny K (2004) Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Chemie der Erde Geochem 64:171–181

    Article  Google Scholar 

  • Salve PR, Maurya A, Kumbhare PS, Ramteke DS, Wate SR (2008) Assessment of groundwater quality with respect to fluoride. Bull Environ Contam Toxicol 81:289–293

    Article  Google Scholar 

  • Saxena V, Ahmed S (2003) Inferring chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43(6):731–736

    Google Scholar 

  • Shaji E, Viju BJ, Thambi DS (2007) High fluoride in groundwater of Palghat District, Kerala. Curr Sci 92(2):240–246

    Google Scholar 

  • Short HE, McRobert TW, Bernard AS, Mannadinayer AS (1937) Endemic fluorosis in the Madras Presidency. Ind J Med Res 25:553–561

    Google Scholar 

  • Sreedevi PD, Ahmed S, Made B, Ladous E, Gandolfi JM (2006) Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environ Geol 50:1–11. doi:10.1007/s00254-005-0167-z

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Vasantavigar M, Prasanna V and John P (2007) Geochemistry of Fluorides in groundwater of Salem district, Tamilnadu, India, Indian J Geochem 22(2):237–246

    Google Scholar 

  • Srinivasamoorthy K, Chidambaram M, Prasanna MV, Vasanthavigar M, John Peter A, Anandhan P (2008a) Identification of major sources controlling Groundwater Chemistry from a hard rock terrain—A case study from Mettur taluk, Salem district, Tamilnadu, India. J Earth Sys Sci 117(1):49–58

    Article  Google Scholar 

  • Srinivasamoorthy K, Chidambaram S, Vasanthavigar M (2008b) Geochemistry of fluorides in Salem district, Tamilnadu, India. J Envro Geol 16:25

    Google Scholar 

  • Subba Rao N (2002) Geochemistry of groundwater in parts of Guntur Dist., A.P., India. Environ Geol 41:552–562

    Article  Google Scholar 

  • Susheela AK (1999a) Dark side of fluoride. The Daily Star. February 20; Features, 16 (col. 5)

  • Susheela AK (1999b) Fluorosis management programme in India. Curr Sci 77(10):1250–1256

    Google Scholar 

  • Tirumalesh K, Shivanna K, Jalihal AA (2007) Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India. Hydrogeol J 15:589–598. doi:10.1007/s10040-006-0107-3

    Article  Google Scholar 

  • Valenzuela-Vasquez L, Ramırez-Hernandez J, Reyes-Lopez J, Sol-Uribe A, Lazaro-Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ Geol 51:17–27

    Article  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Wodeyar BK, Sreenivasan G (1996) Occurrence of Fluoride in the groundwater and its impact in peddavankahalla basin, Bellary District, Karnataka, A preliminary study. Current Science 70 No.1

Download references

Acknowledgments

The authors thank the anonymous reviewer for his help to improve the manuscript in the present form. Thanks also to Department of Science and Technology, New Delhi, India for providing this work as a Young Scientist Project to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaraj Srinivasamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M. et al. Assessment of groundwater quality with special emphasis on fluoride contamination in crystalline bed rock aquifers of Mettur region, Tamilnadu, India. Arab J Geosci 5, 83–94 (2012). https://doi.org/10.1007/s12517-010-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-010-0162-x

Keywords

Navigation