Skip to main content

Advertisement

Log in

Monitoring of dust storm and estimation of aerosol concentration in the Middle East using remotely sensed images

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Dust storms are one of the major environmental disasters in the arid regions of Middle East, occurring in very high frequency. As a result, monitoring dust storms and determining the aerosol concentration in the atmosphere of the Middle East are vital. The most appropriate technique in the study on dust storms is the remote sensing technique. Hence, in this study, we try to find the appropriate remote sensing techniques for the monitoring of dust storms and estimation of aerosol concentration in the Middle East. The 28 Moderate resolution Imaging Spectroradiometer (MODIS) images in the dusty days of 2008–2009 were utilized in this study. The well-known methods for monitoring dust storms using MODIS images in arid regions utilize a combination of reflective and thermal infrared bands (D-parameter), brightness temperature difference (BTD) and a normalized difference dust index (NDDI) methods. Comparing these three methods demonstrate that the D-parameter is the best method for the retrieval of dust storm from MODIS images in the Middle East. Hence, the dust storms were monitored using the D-parameter maps, retrieved from MODIS images. The relation between the visibility data (observed in 41 meteorological stations in the Middle East) and the corresponding D-parameter values could then be investigated. Processing the results showed that an exponential relation exists between them. Using the developed exponential function, the D-parameter maps were then converted to visibility maps. These visibility maps could then be classified to specific dust storm classes. Finally, using the empirical formula, the visibility maps were converted to aerosol concentration maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achudume AC, Oladipo BO (2009) Effects of dust storm on health in the Nigerian environment. Biol Med 1:21–27

    Google Scholar 

  • Ackerman SA (1989) Using the radiative temperature difference at 3.7 and 11 μm to tract dust outbreaks. Remote Sens Eviron 27:129–133

    Article  Google Scholar 

  • Ackerman SA (1997) Remote sensing aerosols using satellite infrared observations. J Geophys Res. doi:10.1029/96JD03066

    Google Scholar 

  • Al-Dabbas MA, Abbas MA, Al-Khafaji RM (2012) Dust storms loads analyses—Iraq. Arab J Geosci 5(1):121–131

    Article  Google Scholar 

  • Al-Dousari AM, Al-Awadhi J, Ahmed M (2013) Dust fallout characteristics within global dust storm major trajectories. Arab J Geosci 6(10):3877–3884

    Google Scholar 

  • Al-Farajii FAH (2001) Combating desertification and sandstorms in Iraq. In: Youlin Y, Squires V, Qi L (eds) Global alarm: dust and sandstorm from the world's drylands. United Nations, Bangkok, pp 203–212

    Google Scholar 

  • Al-Hurban AE (2013) Effects of recent anthropogenic activities on the surface deposits of Kuwait. Arab J Geosci. doi:10.1007/s12517-013-0866-9

    Google Scholar 

  • Awad AM, Mashat AWS (2013) Synoptic features associated with dust transition processes from North Africa to Asia. Arab J Geosci. doi:10.1007/s12517-013-0923-4

    Google Scholar 

  • Baddock MC, Bullard JE, Bryant RG (2009) Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens Environ 113:1511–1528

    Article  Google Scholar 

  • Barnum BH, Winstead NS, Wesely J, Hakola A, Colarco PR, Toon OB, Ginoux P, Brooks G, Hasselbarth L, Toth B (2004) Forecasting dust storms using the CARMA-dust model and MM5 weather data. Environ Model Softw 19:129–140

    Article  Google Scholar 

  • Bartlett KS (2004) Dust storm forecasting for Al Udeid AB, Qatar: an empirical analysis. Air Force Inst of Tech, Wright-Patterson Air Force Base, Air University, Ohio, Master's Thesis

    Google Scholar 

  • Batjargal Z, Dulam J, Chung YS (2006) Dust storms are an indication of an unhealthy environment in East Asia. Environ Monit Assess 114:447–460

    Article  Google Scholar 

  • Chaboureau JP, Tulet P, Mari C (2007) Diurnal cycle of dust and cirrus over West Africa as seen from Meteosat Second Generation satellite and a regional forecast model. Geophys Res Lett. doi:10.1029/2006GL027771

    Google Scholar 

  • Chen YS, Sheen PC, Chen ER, Liu YK, Wu TN, Yang CY (2004) Effects of Asian dust storm events on daily mortality in Taipei, Taiwan. Environ Res 95:151–155

    Article  Google Scholar 

  • Christopher SA, Jones TA (2010) Satellite and surface-based remote sensing of Saharan dust aerosols. Remote Sens Environ 114(5):1002–1007

    Article  Google Scholar 

  • Chu DA, Remer LA, Kaufman YJ, Schmid B, Redemann J, Knobelspiesse K, Chern JD, Livingston J, Russell PB, Xiong X, Ridgway W (2005) Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia. J Geophys Res. doi:10.1029/2004JD005208

    Google Scholar 

  • Darmenov A, Sokolik IN (2005) Identifying the regional thermal–IR radiative signature of mineral dust with MODIS. Geophys Res Lett. doi:10.1029/2005GL023092

    Google Scholar 

  • Davara F, de la Cruz A (2004) Dust storm monitoring: effects on the environment, human health and potential security conflicts. Proc SPIE 5574:361–371

    Article  Google Scholar 

  • Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, Sinyuk A (2008) Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys 8:209–250

    Article  Google Scholar 

  • El-Askary HM, Kafatos M, Hegazy MN (2002) Environmental monitoring of dust storms over the Nile Delta, Egypt using MODIS satellite data. Proc 3rd Int Symp Remote Sensing of Urban Areas, Istanbul, Turkey.

  • El-Askary H, Gautam R, Singh RP, Kafatos M (2006) Dust storms detection over the Indo-Gangetic basin using multi sensor data. Adv Space Res 37:728–733

    Article  Google Scholar 

  • Evan JP, Smith RB (2001) Modeling the climate of Southwest Asia. Proc. of Int Congr on Modeling and Simulation, MODSIM01, Australian National University, Canberra, Australia, December 10-13.

  • Evan AT, Heidinger AK, Pavolonis MJ (2006) Development of a new over-water advanced very high resolution radiometer dust detection algorithm. Int J Remote Sens 27:3903–3924

    Article  Google Scholar 

  • Gengsheng Y, Honglang X, Wanquan T (2001) Mitigating the effects of disastrous sand-dust storms: a Chinese perspective. In: Youlin Y, Squires V, Qi L (eds) Global alarm: dust and sandstorm from the world's drylands. United Nations, Bangkok, pp 283–318

    Google Scholar 

  • Gu Y, Rose WI, Bluth GJS (2003) Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands: a case study of April 7, 2001 sandstorm in China. Geophys Res Lett. doi:10.1029/2003GL017405

    Google Scholar 

  • Gulnura I, Abuduwaili J, Oleg S (2013) Deflation processes and their role in desertification of the southern Pre-Balkhash deserts. Arab J Geosci. doi:10.1007/s12517-013-1106-z

    Google Scholar 

  • Han HJ, Sohn BJ, Huang HL, Weisz E (2010) Simulation of spectral effects of Asian dusts on the AIRS radiances and its application to retrieval of dust properties. Proc SPIE. doi:10.1117/12.869541

    Google Scholar 

  • Hansell RA, Ou SC, Liou KN, Roskovensky JK, Tsay SC, Hsu C, Ji Q (2007) Simultaneous detection/separation of mineral dust and cirrus clouds using MODIS thermal infrared window data. Geophys Res Lett. doi:10.1029/2007GL029388

    Google Scholar 

  • Hao X, Qu JJ (2007) Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. J Appl Remote Sens. doi:10.1117/1.2740039

    Google Scholar 

  • Hao Z, Gong F, Tu Q, Mao Z (2011) A detection algorithm for Asian dust aerosol over China Seas based on MODIS observations. Proc SPIE. doi:10.1117/12.898017

    Google Scholar 

  • Hickey B, Goudie AS (2007) The use of TOMS and MODIS to identify dust storm source areas: the Tokar Delta (Sudan) and the Seistan Basin (south west Asia). In: Kalvoda J (ed) Goudie AS. Geomorphological variations, Praha

    Google Scholar 

  • Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright reflecting source regions. IEEE Trans Geosci Remote Sens 42:557–569

    Article  Google Scholar 

  • Hsu NC, Tsay SC, King MD (2006) Deep Blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans Geosci Remote Sens 44:3180–3195

    Article  Google Scholar 

  • Hu XQ, Lu NM, Niu T, Zhang P (2008) Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos Chem Phys 8:1649–1659

    Article  Google Scholar 

  • Ichoku C, Kaufman YJ, Remer LA, Levy R (2004) Global aerosol remote sensing from MODIS. Adv Space Res 34:820–827

    Article  Google Scholar 

  • Jamalizadeh MMR, MoghaddamniaA PJ, Arabi V, Homayounifar M, Shahryari A (2008) Dust storm prediction using ANNs technique (a case study: Zabol city). Eng Technol 43:512–520

    Google Scholar 

  • Karimi N, Moridnejad A, Golian S, Mohammad Vali Samani J, Karimi D, Javadi S (2012) Comparison of dust source identification techniques over land in the Middle East region using MODIS data. Can J Remote Sens 38(5):586–599

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Nastos PT, Kosmopoulos PG (2008) Study on an intense dust storm over Greece. Atmos Environ 42:6884–6896

    Article  Google Scholar 

  • Kaufman YJ (2005) Satellite observations of natural and anthropogenic aerosol effects on clouds and climate. Space Sci Rev 125:139–147

    Article  Google Scholar 

  • Kaufman YJ, Tanre D, Remer LA, Vermote EF, Chu A, Holben BN (1997) Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J Geophys Res 102(D14):17051–17067

    Article  Google Scholar 

  • Kaufman YJ, Karnieli A, Tanre D (2000) Detection of dust over deserts using satellite data in the solar wavelengths. IEEE Trans Geosci Remote Sens 38:525–531

    Article  Google Scholar 

  • Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  Google Scholar 

  • King MD, Kaufman YJ, Menzel WP, Tanre D (1992) Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:2–27

    Article  Google Scholar 

  • King MD, Kaufman YJ, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present and future. Bull Am Meteorol Soc 80:2229–2259

    Article  Google Scholar 

  • Klüser L, Schepanski K (2009) Remote sensing of mineral dust over land with MSG infrared channels: a new Bitemporal Mineral Dust Index. Remote Sens Environ 113:1853–1867

    Article  Google Scholar 

  • Koren I, Kaufman YJ (2004) Direct wind measurements of Saharan dust events from Terra and Aqua satellites. Geophys Res Lett. doi:10.1029/2003GL019338

    Google Scholar 

  • Kubilay N, Oguz T, Kocak M, Torres O (2005) Ground-based assessment of Total Ozone Mapping Spectrometer (TOMS) data for dust transport over the north eastern Mediterranean. Glob Biogeochem Cycles. doi:10.1029/2004GB002370

    Google Scholar 

  • Legrand M, Nertrand JJ, Desbois M, Menenger L, Fouqurt Y (1989) The potential of infrared satellite data for the retrieval of Saharan dust optical depth over Africa. J. Clim Appl Meteorol 28:309–318

    Article  Google Scholar 

  • Legrand M, Plana-Fattori A, N'doume C (2001) Satellite detection of dust using the IR imagery of Meteosat, 1. Infrared difference dust index. J Geophys Res 106(D16):18251–18274

    Article  Google Scholar 

  • Lin TH, Hsu NC, Tsay SC, Huang SJ (2011) Asian dust weather categorization with satellite and surface observations. Int J Remote Sens 32:153–170

    Article  Google Scholar 

  • Mélin F, Clerici M, Zibordi G, Holben BN, Smirnov A (2010) Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data. Remote Sens Environ 114:230–250

    Article  Google Scholar 

  • Miller SD (2003) A consolidated technique for enhancing desert dust storms with MODIS. Geophys Res Lett. doi:10.1029/2003GL018279

    Google Scholar 

  • Miri A, Ahmadi H, Ghanbari A, Moghaddamnia A (2007) Dust storm impacts on air pollution and public health under hot and dry climate. Int J Energy Environ 1:101–105

    Google Scholar 

  • Moorthy KK, Babu SS, Satheesh SK, Srinivasan J, Dutt CBS (2007) Dust absorption over the Great Indian Desert inferred using ground-based and satellite remote sensing. J Geophys Res. doi:10.1029/2006JD007690

    Google Scholar 

  • Najafi MS, Khoshakhllagh F, Zamanzadeh SM, Shirazi MH, Samadi M, Hajikhani S (2013) Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab J Geosci. doi:10.1007/s12517-013-1086-z

    Google Scholar 

  • Ochirhkuyag L, Tsolmon R (2008) Monitoring the source of trans-national dust storm in northeast Asia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, Part, B7, Beijing, pp 835-839.

  • Othman N, Matjafri MZ, Lim HS, Abdullah K (2010) Climate affected by dust aerosol over arid region of Makkah, Saudi Arabia. Proc SPIE. doi:10.1117/12.869507

    Google Scholar 

  • Peyridieu S, Chedin A, Tanre D, Capelle V, Pierangelo C, Lamquin N, Armante R (2010) Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic-comparison to MODIS and CALIPSO. J Atmos Chem Phys 10:1953–1967

    Article  Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Fray RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE Trans Geosci Remote Sens 41:459–473

    Article  Google Scholar 

  • Prasad AK, Singh RP (2007) Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens Environ 107:109–119

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1–31

    Article  Google Scholar 

  • Qu JJ, Hao X, Kafatos M, Wang L (2006) Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurments. IEEE Geosci Remote Sens Lett 3:484–486

    Article  Google Scholar 

  • Rafigul Islam M, Elshaikh ZE, Khalifa OO, ZahirulAlam AHM, Khan S (2010) Fade margin analysis due to dust storms based on visibility data measured in a desert. Am J Appl Sci 7:551–555

    Article  Google Scholar 

  • Rashki A, Kaskautis DG, Goudie AS, Kahn RA (2013) Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran. Sci Tot Environ 463–464:552–564

    Article  Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Roskovensky JK, Liou KN (2005) Differentiating airborne dust from cirrus clouds using MODIS data. Geophys Res Lett. doi:10.1029/2005GL022798

    Google Scholar 

  • Roskovensky JK, Liou KN, Garrett TJ, Baumgardner D (2004) Simultaneous retrieval aerosol and thin cirrus optical depths using MODIS airborne similar data during CRSTAL-FACE and CLAMS. Geophys Res Lett. doi:10.1029/2004GL020457

    Google Scholar 

  • Sawaf T, Al-Saad D, Gebran A, Barazangi M, Best J, Chaimov T (1993) Stratigraphy and structure of eastern Syria across the Euphrates depression. Tectonophysics 220:267–281

    Article  Google Scholar 

  • Sayer AM, Hsu NC (2013) Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data. J Geophys Res 118(14):7864–7872. doi:10.1002/jgrd.50600

    Google Scholar 

  • Shao Y, Dong CH (2006) A review on East Asian dust storm climate modeling and monitoring. Glob Planet Change 52:1–22

    Article  Google Scholar 

  • Shao Y, Yang Y, Wang J, Song Z, Leslie LM, Dong C, Zhang Z, Lin Z, Kanai Y, Yabuki S, Chun Y (2003) Northeast Asian dust storms: real-time numerical prediction validation. J Geophys Res. doi:10.1029/2003JD003667

    Google Scholar 

  • Shenk WE, Curran RJ (1974) The detection of dust storms over land and water with satellite visible and infrared measurements. Mon Weather Rev 102:830

    Article  Google Scholar 

  • Simpson JJ, Hufford GL, Servranckx R, Berg J, Pieri D (2003) Airborne Asian dust: case study of long-range transport and implications for the detection of volcanic ash. Weather Forecast 18:121–141

    Article  Google Scholar 

  • Sokolik JN (2002) The spectral radiative signature of wind-blown mineral dust: implications for remote sensing in the thermal IR region. Geophys Res Lett. doi:10.1029/2002GL015910

    Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev 22:1821–1834

    Article  Google Scholar 

  • Thomas DS G (1997) Arid zone geomorphology process, from an change in dryland. John Wiley & sons.

  • Wald AE, Kaufman YJ, Tanre D, Gao BC (1998) Daytime and nighttime detection of mineral dust over desert using infrared spectral contrast. J Geophys Res 103(D24):32307–32313

    Article  Google Scholar 

  • Washington R, Todd MC (2005) Atmospheric controls on mineral dust emission from Bodele Depression, Chad: the role of the low level jet. Geophys Res Lett. doi:10.1029/2005GL023597

    Google Scholar 

  • Washington R, Todd M, Middleton NJ, Goudie AS (2003) Dust-storm sources areas determined by the Total Ozone Monitoring Spectrometer surface observations. Ann Assoc Am Geogr 93:297–313

    Article  Google Scholar 

  • Yang B, Brauning A, Zhang Z, Dong Z, Esper J (2007) Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. J Atmos Environ 41:9288–9299

    Article  Google Scholar 

  • Yang YQ, Hou Q, Zhou CH, Liu HL, Wang YQ, Niu T (2008) Sand/dust storm processes in Northeast Asia and associated large-scale circulations. Atmos Chem Phys 8:25–23

    Article  Google Scholar 

  • Zha Y, Li L (2007) Influence of the 17 April 2006 Asian dust storm on Moderate Resolution Imaging Spectroradiometer data for land cover identification. J Geophys Res. doi:10.1029/2006 JD007869

    Google Scholar 

  • Zhang B, Tsunekawa A, Tsubo M (2006) Retrieval of optical depth of dust aerosol over land using two MODIS infrared bands. Proc SPIE. doi:10.1117/12.713410

    Google Scholar 

  • Zheng X, Lu F, Fang X, Wang Y, Guo L (1998) Study of dust storms in China using satellite data. Proc SPIE 3501:163–168

    Article  Google Scholar 

  • Zhu A, Ramanathan V, Li F, Kim D (2007) Dust plumes over the Pacific. Indian and Atlantic Oceans: climatology and radiative impact. J Geophys Res. doi:10.1029/2007JD008427

    Google Scholar 

  • Zou XK, Zhai PM (2004) Relationship between vegetation coverage and spring dust storms over northern china. J Geophys Res. doi:10.29/2003JD003913

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jordan Michael (University of Melbourne, Australia) for his valuable revision and edition of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Taheri Shahraiyni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taheri Shahraiyni, H., Karimi, K., Habibi Nokhandan, M. et al. Monitoring of dust storm and estimation of aerosol concentration in the Middle East using remotely sensed images. Arab J Geosci 8, 2095–2110 (2015). https://doi.org/10.1007/s12517-013-1252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-013-1252-3

Keywords

Navigation