Skip to main content
Log in

Analysis of the effect of groundwater on soil arch in shield tunneling

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The soil arch above tunnel face should be considered in the calculation of the minimum support pressure on tunnel face. It is not clear that the effect of water on the soil arch at present. Various model tests are carried out to analyze the differences of the soil arch above tunnel face between dry sand and saturated sand. Tests are performed with a variety of impact factors such as sand particle size, cover depth, and water conditions. Test results showed that the forming process of soil arch is delayed by groundwater and the arch height can be changed. Based on the finite element simulation, it can be concluded that there are two factors which affect the soil arch in water. The first one is groundwater and the other one is internal friction angle. At last, it can be concluded that the lateral earth pressure coefficients of the prism above tunnel face should be revised because the soil arch is affected by groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahmed M, Iskander M (2012) Evaluation of tunnel face stability by transparent soil models. Tunn Undergr Space Technol 27(1):101–110

    Article  Google Scholar 

  • Anagnostou G (2012) The contribution of horizontal arching to tunnel face stability. Géotechnique 35(1):34–44

    Google Scholar 

  • Anagnostou G, Kovári K (1996) Face stability conditions with earth-pressure-balanced shields. Tunn Undergr Space Technol 11(2):165–173

    Article  Google Scholar 

  • Anagnostou G, Kovdri K (1994) The face stability of slurry-shield-driven tunnels. Tunnels and Deep Space 9(2):165–174

    Article  Google Scholar 

  • Atkinson J, Potts D (1977) Stability of a shallow circular tunnel in cohesionless soil. Géotechnique 27(2):203–215

    Article  Google Scholar 

  • Blanc M, Rault G, Thorel L, Almeida M (2013) Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network. Geotext Geomembr 36:92–105

    Article  Google Scholar 

  • Chen C, Huang W, Tseng C (2011) Stress redistribution and ground arch development during tunneling. Tunn Undergr Space Technol 26(1):228–235

    Article  Google Scholar 

  • Chen R, Tang L, Yin X, Chen Y, Bian X (2014) An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils. Acta Geotech 10(5):683–692

    Article  Google Scholar 

  • Chen Y, Cao W, Chen R (2008) An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments. Geotext Geomembr 26(2):164–174

    Article  Google Scholar 

  • Cho J, Lim H, Jeong S, Kim K (2015) Analysis of lateral earth pressure on a vertical circular shaft considering the 3D arching effect. Tunn Undergr Space Technol 48:11–19

    Article  Google Scholar 

  • Gudehus G, Melix P (1986) Standsicherheitsnachweise für Bauzustände von Tunneln in schwach kohäsivem Gebirge. STUVA, Forschung u. Praxis 30:145–152. (in German)

  • Hong W, Bov M, Kim H (2016) Prediction of vertical pressure in a trench as influenced by soil arching. KSCE J Civ Eng 20(7):2711–2718

    Article  Google Scholar 

  • Horn M (1961) Alagutak homlokbiztositására ható vizszintes földnyomásvizsgálat néhány erdménye. Az országos melyepitóipari konferencia eloádásai, Közlekdedési Dokumentaciós Vállalat, Budapest. (in Hungarian)

  • Idinger G, Aklik P, Wu W, Borja R (2011) Centrifuge model test on the face stability of shallow tunnel. Acta Geotech 6(2):105–117

    Article  Google Scholar 

  • Janssen HA (1895) Versuche über Getreidedruck in Silozellen. Zeitung des Vereins Deutscher Ingenieure 39:1045–1049. (in German)

  • Kirsch A (2010) Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotech 5(1):43–62

    Article  Google Scholar 

  • Lai H, Zheng J, Zhang J, Zhang R, Cui L (2014) DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput Geotech 61:13–23

    Article  Google Scholar 

  • Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606

    Article  Google Scholar 

  • Lee C, Wu B, Chen H, Chiang K (2006) Tunnel stability and arching effects during tunneling in soft clayey soil. Tunn Undergr Space Technol 21(2):119–132

    Article  Google Scholar 

  • Melix P (1987) Modellversuche und Berechnungen zur Standsicherheit oberflächennaher Tunnel. Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe, 103. (in German)

  • Möller S, Vermeer P (2008) On numerical simulation of tunnel installation. Tunn Undergr Space Technol 23(4):461–475

    Article  Google Scholar 

  • Mollon G, Dias D, Soubra AH (2010) Face stability analysis of circular tunnels driven by a pressurized shield. J Geotech Geoenviron Eng 136(1):215–229

    Article  Google Scholar 

  • Pardo G, Sáez E (2014) Experimental and numerical study of arching soil effect in coarse sand. Comput Geotech 57:75–84

    Article  Google Scholar 

  • Robert L, Sanping Z (2002) Numerical study of soil arching mechanism in drilled shafts for slope stabilization. Soils Found 42(2):83–92

    Article  Google Scholar 

  • Rui R, Tol A, Xia Y, Eekelen S, Hu G (2016) Investigation of soil-arching development in dense sand by 2D model tests. Geotech Test J 39(3):20150130

    Article  Google Scholar 

  • Shen S, Ma Lei, Xu Y, Yin Z (2013) Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can Geotech J 50(11):1129–1142

    Article  Google Scholar 

  • Shen S, Cui Q, Ho C, Xu Y (2016) Ground response to multiple parallel microtunneling operations in cemented silty clay and sand. J Geotech Geoenviron 142(5):1–11

    Article  Google Scholar 

  • Terzaghi K, Peck R (2013) Soil mechanics in engineering practice. John Wiley & Sons, New York

    Google Scholar 

  • Zhuang Y, Li S (2015) Three-dimensional finite element analysis of arching in a piled embankment under traffic loading. Arab J Geosci 8(10):7751–7762

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Gao, Y. & Liu, S. Analysis of the effect of groundwater on soil arch in shield tunneling. Arab J Geosci 11, 534 (2018). https://doi.org/10.1007/s12517-018-3829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-3829-3

Keywords

Navigation