Skip to main content
Log in

Effect of abrasive type on marble cutting performance of abrasive waterjet

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Abrasives play a critical role in the erosion process of abrasive waterjet (AWJ). Therefore, they can significantly affect the performance and profitability of cutting. In the relevant literature, there is no comprehensive study investigating the effect of abrasive type on the rock cutting performance. The current study aims to fill this gap. Various abrasives (garnet, white fused alumina, brown fused alumina, silicon carbide, glass beads, and emery powder) are used on this basis. Marble samples are cut in the tests in which the cutting parameters are kept constant. Cutting performances of the abrasives are investigated based on some performance outputs (the cutting width, cutting depth, kerf angle, and surface roughness). The study revealed that the silicon carbide and fused alumina (brown and white) present higher cutting performances in terms of the cutting depth and kerf angle. It is also concluded that the abrasives produce similar cutting widths and the glass bead produces smoother cutting surfaces. Additionally, it is demonstrated that cutting performance of the AWJ is highly affected by abrasive density and hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alsoufi SM, Suker KD, Alhazmi WM, Azam S (2017) Influence of abrasive waterjet machining parameters on the surface texture quality of Carrara marble. J Sur Eng Mater Advan Tech 7:25–37

    Google Scholar 

  • Arab PB (2017) Rock cutting by abrasive water jet: an energy approach. Doctoral Thesis, University of Sao Paulo, Sao Carlos, Brazil, 176 pages

  • ASTM designation: ASTM C170/C170M-16 (2016). Standard test method for compressive strength of dimension stone

  • ASTM designation: ASTM C880/C880M-15 (2016). Standard test method for flexural strength of dimension stone

  • ASTM designation: ASTM C97/C97M-15 (2016). Standard test methods for absorption and bulk specific gravity of dimension stone

  • ASTM designation: ASTM D854–14 (2016). Standard test methods for specific gravity of soil solids by water pycnometer

  • Aswathy K, Govindan P (2015) Modeling of abrasive water jet machining process. Int J Rec Adv Mech Eng 4(3):59–71

    Article  Google Scholar 

  • Aydin G (2014) Recycling of abrasives in abrasive water jet cutting with different types of granite. Arab J Geosci 7(10):4425–4435

    Article  Google Scholar 

  • Aydin G (2015) Performance of recycling abrasives in rock cutting by abrasive waterjet. J Cent South Univ 22(3):1055–1061

    Article  Google Scholar 

  • Aydin G, Karakurt I, Aydiner K (2011) An investigation on the surface roughness of the granite machined by abrasive waterjet. Bull Mater Sci 34(4):985–992

    Article  Google Scholar 

  • Aydin G, Karakurt I, Aydiner K (2012) Performance of abrasive waterjet in granite cutting: influence of the textural properties. J Mater Civ Eng 24(7):944–949

    Article  Google Scholar 

  • Aydin G, Karakurt I, Aydiner K (2013a) Investigation of the surface roughness of rocks sawn by diamond sawblades. Int J Rock Mech Min Sci 61:171–182

    Article  Google Scholar 

  • Aydin G, Karakurt I, Aydiner K (2013b) Prediction of cut depth of the granitic rocks machined by abrasive waterjet (AWJ). Rock Mech Rock Eng 46(5):1223–1235

    Article  Google Scholar 

  • Aydin G, Karakurt I, Hamzacebi C (2014) Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting. Int J Adv Manuf Technol 75:1321–1330

    Article  Google Scholar 

  • Aydin G, Kaya S, Karakurt I (2017) Utilization of solid-cutting waste of granite as an alternative abrasive in abrasive waterjet cutting of marble. J Clean Prod 159:241–247

    Article  Google Scholar 

  • Dani DN, Shah HN, Prajapati HB (2016) An experimental investigation of abrasive water jet machining on granite. Int J Innov Res Sci Technol 3(5):26–31

    Google Scholar 

  • Engin IC (2012) A correlation for predicting the abrasive water jet cutting depth for natural stones. S Afr J Sci 108(9/10):1–11

    Article  Google Scholar 

  • Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613–620

    Article  Google Scholar 

  • Gryc R, Hlavac LM, Mikolas M, Sancer J, Danek T (2014) Correlation of pure and abrasive water jet cutting of rocks. Int J Rock Mech Min Sci 65:149–152

    Article  Google Scholar 

  • Gupta V, Garg PM, Batra KM, Khanna R (2013) Analysis of kerf taper angle in abrasive water jet cutting of Makrana White marble. Asian J Eng Appl Tech 2(2):35–39

    Google Scholar 

  • Hlavac LM, Hlavacova IM, Gembalova L, Kalicinsky J, Fabian S (2009) Experimental method for the investigation of the abrasive water jet cutting quality. J Mater Process Technol 209(20):6190–6195

    Article  Google Scholar 

  • Huang ZC, Hou GR, Wang J, Feng XY (2006) The effect of high pressure abrasive water jet cutting parameters on cutting performance of granite. Key Eng Mater 304-305:560–564

    Article  Google Scholar 

  • Karakurt İ, Aydın G, Aydıner K (2011) Analysis of the kerf angle of the granite machined by abrasive waterjet (AWJ). Indian J Eng Mater Sci 18(6):435–442

    Google Scholar 

  • Karakurt İ, Aydın G, Aydıner K (2012a) An experimental study on the cut depth of the granite in abrasive waterjet cutting. Mater Manuf Process 27(5):538–544

    Article  Google Scholar 

  • Karakurt İ, Aydın G, Aydıner K (2012b) A study on the prediction of kerf angle in abrasive waterjet machining of rocks. Proc Inst Mech Eng B J Eng Manuf 226:1489–1499

    Article  Google Scholar 

  • Karakurt I, Aydin G, Aydiner K (2014) An investigation on the kerf width in abrasive waterjet cutting of granitic rocks. Arab J Geosci 7(7):2923–2932

    Article  Google Scholar 

  • Khan AA, Haque MM (2007) Performance of different abrasive materials during abrasive water jet machining of glass. J Mater Process Technol 191:404–407

    Article  Google Scholar 

  • Konig W, Wulf C (1984) The influence of the cutting parameters on jet forces and the geometry of the kerf. The Seventh International Symposium on Jet Cutting Technology, Ottawa, Canada, BHRA, 179–191

  • Long X, Ruan X, Liua Q, Chen Z, Xue S, Wu Z (2017) Numerical investigation on the internal flow and the particle movement in the abrasive waterjet nozzle. Powder Technol 314:635–640

    Article  Google Scholar 

  • Ludema KC, Meng HC (1995) Wear models and predictive equations: Their form and content. Wear, 181-183(2):1201–1206

  • Miranda MR, Lousa P, Miranda MJA, Kim T (1993) Abrasive waterjet cutting of Portuguese Marbles. Proceedings of 7th American Water jet Conference, Seattle, Washington, pp 443–457

  • Mıynarczuk M, Skiba M, Sitek L, Hlavac P, Hlavacek P, Kozusnikova A (2014) The research into the quality of rock surfaces obtained by abrasive water jet cutting. Arch Min Sci 59(4):925–940

    Google Scholar 

  • Oh T, Cho G (2011) Energy loss from an abrasive waterjet for rock cutting. 2011 WJTA-IMCA Conference and Expo, September 19–21, 2011, Houston, Texas

  • Oh T, Cho G (2016) Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech Rock Eng 49:1059–1072

    Article  Google Scholar 

  • Ojmertz KMC (1993) Abrasive water jet milling: an experimental investigation, in: M. Hashish (Ed.), Proceedings of the 7th US Water Jet Conference, Water Jet Technology Association, St. Louis, pp. 777–791

  • Srinivasu DS, Axinte DA, Shipway PH, Folkes J (2009) Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int J Mach Tool Manu 49:1077–1088

    Article  Google Scholar 

  • Wang J, Guo DM (2003) The cutting performance in multipass abrasive waterjet machining of industrial ceramics. J Mater Process Technol 133:371–377

    Article  Google Scholar 

  • Wang J, Wong WCK (1999) A study of abrasive water jet cutting of metallic coated sheet steel. Int J Mach Tool Manu 39:855–870

    Article  Google Scholar 

  • Xu S (2005) Modelling the cutting process and cutting performance in abrasive waterjet machining with controlled nozzle oscillation. PhD Thesis, Queensland University of Technology, School of Engineering Systems, 205 pages

  • Zaremba D, Heese P, Bauer M, Maier HJ, Hassel T (2015) Particle disintegration in the abrasive water injection jet. WJTA-IMCA Conference and Expo, November 2–4, New Orleans, Louisiana

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Aydin.

Additional information

Editorial handling: Murat Karakus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, G., Kaya, S. & Karakurt, I. Effect of abrasive type on marble cutting performance of abrasive waterjet. Arab J Geosci 12, 357 (2019). https://doi.org/10.1007/s12517-019-4475-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4475-0

Keywords

Navigation